DOI QR코드

DOI QR Code

The Study on the Development of the Educational Contents for the Natural Number Binary System

자연수의 이진체계 교육자료 개발에 관한 연구

  • 장정훈 (제주 한천초등학교) ;
  • 김종우 (제주대학교 초등컴퓨터교육전공)
  • Received : 2015.12.02
  • Accepted : 2015.12.16
  • Published : 2015.12.31

Abstract

Unplugged has been widely used as an instrument for teaching the basic principles of Computer Science. This study presents the teaching contents developed for the children without any knowledge of binary numbers. which successfully guided them to understand the natural number binary system. The level of the pre-lesson for this learning requires counting numbers, matching numbers with cards, and arranging numbers. The activity-based learning is provided for describing natural numbers with the binary system and finding out them in everyday life. To check the adequacy of these materials on their organization and assessment they were tested at the classroom, which showed effective about the knowledge, the attitude and the generalization.

컴퓨터과학의 원리를 교육하기 위한 도구로서 언플러그드 교육은 널리 사용되고 있다. 본 연구에서는 초등학교에서 이진법에 대한 사전학습이 이루어져 있지 않은 학생들을 대상으로 자연수를 이진체계로 표현하는 교육자료 개발에 대해 제시하였다. 사전학습 수준은 수를 세기, 수와 카드를 연결하기, 수를 배열하기가 요구된다. 학습방법은 활동중심학습으로 구성하였으며, 학습내용은 생활 속의 수를 컴퓨터에서 사용하는 방법을 이해하도록 자연수를 이진체계로 표현하기, 생활 속의 이진체계 찾아보기 등이다. 개발된 자료의 적합성 평가를 위하여 교육내용 구성과 평가의 방법에 대하여 현장적용을 하였으며, 자연수의 이진체계 표현에 대한 지식과 태도, 일반화에 효과적인 것으로 평가되었다.

Keywords

References

  1. Bell T. C., Alexander J., Freeman I., & Grimley M. (2009). Computer Science Unplugged: school students doing real computing without computers. Journal of Applied Computing and Information, 13(1), 20-29.
  2. Bell T. C. (2014). The science in computer science: unplugging computer science to find the science. Ubiquity symposium, ACM.
  3. Bell T. C., Witten I. H. & Fellows M. (2015). http://csunplugged.org/
  4. Berry, M. (2013). Computing in the national curriculum. A guide for primary teachers. Bedford: Computing at School.
  5. CSTA (2011). Computational Thinking in K-12 Education Teacher Resources, 2nd.
  6. Denning P. J. (2009). Beyond Computational thinking. Communications of the ACM, 52(6), 28-30. https://doi.org/10.1145/1516046.1516054
  7. Gagne R. M. (1963). The learning requirements for enquiry. Journal of Research in Science Teaching, 1(2), 144-153. https://doi.org/10.1002/tea.3660010211
  8. Google (2015). https://www.google.com/edu/resources/tional-thinking/
  9. Han ByoungRae (2013). The Research of Unplugged Computing Method for Computational Thinking in Elementary informatics Education. KAIE, 3(2), 159-167.
  10. Kim Hyunbe, Kim Kapsu (2014). A Study on the Achievement Goals, Teaching-Learning Methods, and Evaluation Methods in Computer System Education. KAIE, 18(1), 195-202. https://doi.org/10.14352/jkaie.2014.18.1.195
  11. Moon GyoSik (2013). On the Direction of the Application of the Concepts of Computational Thinking for Elementary Education. KOCON, 13(6), 518-526.
  12. Nam ChoongMo, Kim ChongWoo (2011). An Analysis of Teaching and Learning Activities in Elementary Mathematics Based on Computational Thinking, Education. Science and Research in JNU, 13(2), 325-334.
  13. National Research Council (2010). Report of a Workshop on The Scope and Nature of Computational Thinking, The National Academies Press.
  14. National Research Council (2011). Report of a Workshop of Pedagogical Aspects of Computational Thinking, The National Academies Press.
  15. Wing J. M. (2006), Computational Thinking. Communications of the ACM, CACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
  16. Wing J. M. (2010). Computational Thinking: What and Why? https://www.cs.cmu.edu/-CompThink/resources/TheLinkWing.pdf

Cited by

  1. 컴퓨터과학 쇼를 통한 초등학생의 정보교육에 대한 인식변화 vol.21, pp.2, 2017, https://doi.org/10.14352/jkaie.2017.21.2.209
  2. 중학교 수학과 교육과정 수와 연산 영역의 재구조화 연구 vol.59, pp.2, 2015, https://doi.org/10.7468/mathedu.2020.59.2.167