DOI QR코드

DOI QR Code

Efficiency of stiffening plates in fabricated concrete-filled tubes under monotonic compression

  • Received : 2014.07.17
  • Accepted : 2014.10.23
  • Published : 2015.04.25

Abstract

Concrete-filled tubes (CFT), formed by an outer steel tube filled with plain or reinforced concrete inside, have been increasingly used these recent decades as columns or beam-columns, especially for tall buildings in seismic areas due to their excellent structural response. This improved behavior is derived from the effect of confinement provided by the tube, since the compressive strength of concrete increases when being subjected to hydrostatic pressure. In circular CFTs under compression, the whole tube is uniformly tensioned due to the radial expansion of concrete. Contrarily, in rectangular and square-shaped CFTs, the lateral flanges become subjected to in-plane bending derived from this volumetric expansion, and this fact implies a reduction of the confinement effect of the core. This study presents a numerical analysis of different configurations of CFT stub columns with inner stiffening plates, limited to the study of the influence of these plates on the compressive behavior without eccentricity. The final purpose is to evaluate the efficiency in terms of strength and ductility of introducing stiffeners into circular and square CFT sections under large deformation axial loading.

Keywords

References

  1. Brockenbrough, R.L. (1999), Structural Steel Designer's Handbook, (3rd Edition), McGraw Hill, Inc.
  2. Cai, J. and Long, Y.L. (2009), "Local buckling of steel plates in rectangular CFT columns with binding bars", J. Construct. Steel Res., 65(4), 965-972. https://doi.org/10.1016/j.jcsr.2008.07.025
  3. Chacon, R., Mirambell, E. and Real, E. (2012), "Local buckling in concrete-filled circular tubes (CFT)", Tub. Structures XIV, pp. 35-42.
  4. Elchalakani, M., Zhao, X.L. and Grzebieta, R.H. (2001), "Concrete-filled circular steel tubes subjected to pure bending", J. Construct. Steel Res., 57(11), 1141-1168. https://doi.org/10.1016/S0143-974X(01)00035-9
  5. Eurocode 4 (2004), EN 1994-1-1:2004, Design of composite steel and concrete structures, Part 1.1: General rules and rules for buildings; European Committee for Standardization, Brussels, Belgium.
  6. Hajjar, J., Schiller, P.H. and Molodan, A. (1998), "A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip", Eng. Struct., 20(8), pp. 663-676 https://doi.org/10.1016/S0141-0296(97)00107-7
  7. Hu, H., Huang, C., Wu, M. and Wu, Y. (2003), "Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect", J. Struct. Eng., 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
  8. Huang, C.S., Yeh, Y-K., Liu, G-Y., Hu, H., Tsai, K.C., Weng, Y.T., Wang, S.H. and Wu, M.H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng., 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222)
  9. Jankowiak, T. and Lodigowsky, T. (2005), "Identification of parameters of concrete damage plasticity constitutive model", Found. Civil Environ. Eng., Poznan University of Technology.
  10. Liu, G.Y., Yeh, Y.K. and Huang, C.S. (2002), "Tie-bar stiffening scheme for square CFT beam-columns with high tube width-to-thickness ratio", National Science Council Paper; Taipei, Taiwan.
  11. Liu, D., Gho, W. and Yuan, J. (2003), "Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns", J. Construct. Steel Res., 59(12), 1499-1515. https://doi.org/10.1016/S0143-974X(03)00106-8
  12. Lubliner, J. and Oller, S. (1985), "A plastic-damage model for concrete", Int. J. Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  13. Nassem Baig, M., Fan, J. and Nie, J. (2006), "Strength of concrete filled steel tubular columns", Tsinghua Sci. Technol., 11(6), 657-666. https://doi.org/10.1016/S1007-0214(06)70248-6
  14. Ren, Q., Han, L.H., Lam, D. and Hou, C. (2014), "Experiments on special-shaped CFST stub columns under axial compression", J. Construct. Steel Res., 98, 123-133. https://doi.org/10.1016/j.jcsr.2014.03.002
  15. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  16. Susantha, K.A.S., Ge, H. and Usami, T. (2000), "Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes", Eng. Struct., Nagoya University, 23(10), 1331-1347. https://doi.org/10.1016/S0141-0296(01)00020-7
  17. Tao, Z., Han, L.H. and Wang, Z.B. (2005). "Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns", J. Construct. Steel Res., 61(7), 962-983. https://doi.org/10.1016/j.jcsr.2004.12.003
  18. Tao, Z., Han, L.H. and Wang, D.Y. (2007). "Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns", Thin-Wall. Struct., 45(5), 517-527. https://doi.org/10.1016/j.tws.2007.04.003
  19. Tao, Z., Han, L H. and Wang, D.Y. (2008). "Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete", Thin-Wall. Struct., 46(10), 1113-1128. https://doi.org/10.1016/j.tws.2008.01.007
  20. Yamao, T., Iwatsubo, K., Yamamuro, T., Ogushi, M. and Matsumura, S. (2002), "Steel bridge piers with inner cruciform plates under cyclic loading", Thin-Wall. Struct., 40(2), 183-193. https://doi.org/10.1016/S0263-8231(01)00059-3
  21. Zhanfei, W. and Yamao, T. (2011), "Ultimate strength and ductility of stiffened steel tubular bridge piers", Int. J. Steel Struct., 11(1), 81-90. https://doi.org/10.1007/S13296-011-1007-5
  22. Zhong, T., Han, L.H. and Wang, Z. (2005), "Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns", J. Construct. Steel Res., 61(7), 962-983. https://doi.org/10.1016/j.jcsr.2004.12.003
  23. Zhong, T., Han, L.H. and Wang, D. (2007), "Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns", Thin-Wall. Struct., 45(5), 517-527. https://doi.org/10.1016/j.tws.2007.04.003
  24. Zhong, T., Han, L.H. and Wang, D. (2008), "Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete", Thin-Wall. Struct., 46(10), 1113-1128. https://doi.org/10.1016/j.tws.2008.01.007

Cited by

  1. 08.46: Local buckling of thin-walled tubes encased in concrete vol.1, pp.2-3, 2017, https://doi.org/10.1002/cepa.267
  2. Behavior of fibre reinforced cementitious material-filled steel tubular columns vol.23, pp.4, 2017, https://doi.org/10.12989/scs.2017.23.4.465
  3. Composite action of hollow concrete-filled circular steel tubular stub columns vol.26, pp.6, 2015, https://doi.org/10.12989/scs.2018.26.6.693