참고문헌
- Abbas, I.A. and Zenkour, A.M. (2013), "LS model on electro-magneto-thermo-elastic response of an infinite functionally graded cylinder", Compos. Struct., 96, 89-96. https://doi.org/10.1016/j.compstruct.2012.08.046
- Al-Huniti, N.S., Al-Nimr, M.A. and Naij, M. (2001), "Dynamic response of a rod due to a moving heat source under the hyperbolic heat conduction model", J. Sound Vib., 242(4), 629-640. https://doi.org/10.1006/jsvi.2000.3383
- Biot, M. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27, 240-253. https://doi.org/10.1063/1.1722351
- Ching, H.K. and Yen, S.C. (2006), "Transient thermoelastic deformations of 2-D functionally graded beams under nonuniformly convective heat supply", Compos. Struct., 73(4), 381-393. https://doi.org/10.1016/j.compstruct.2005.02.021
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Fang, D.N., Sun, Y.X. and Soh, A.K. (2006), "Analysis of frequency spectrum of laser-induced vibration of microbeam resonators", Chinese Phys. Lett., 23, 1554-1557. https://doi.org/10.1088/0256-307X/23/6/055
- Green, A. and Laws, N. (1972) "On the entropy production inequality", Arch. Rat. Anal., 45(1), 47-53.
- Green, A.E. and Lindsay, K.A. (1972) "Thermoelasticity", J. Elast., 2(1), 1-7. https://doi.org/10.1007/BF00045689
- Green, A.E. and Naghdi, P.M. (1993) "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-209. https://doi.org/10.1007/BF00044969
- Kidawa-Kukla, J. (2003), "Application of the Green functions to the problem of the thermally induced vibration of a beam", J. Sound Vib., 262(4), 865-876. https://doi.org/10.1016/S0022-460X(02)01133-1
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Malekzadeh, P. and Shojaee, A. (2014), "Dynamic response of functionally graded beams under moving heat source", J. Vib. Control, 20(6), 803-814. https://doi.org/10.1177/1077546312464990
- Mareishi, S., Mohammadi, M. and Rafiee, M. (2013), "An analytical study on thermally induced vibration analysis of FG beams using different HSDTs", Appl. Mech. Mater., 249-250, 784-791.
- Mukhopadhyay, S., Prasad, R. and Kumar, R. (2011), "On the theory of two-temperature thermoelasticity with two phase-lags", J. Therm. Stresses, 34(4), 352-365. https://doi.org/10.1080/01495739.2010.550815
- Muller, I. (1971), "The coldness, a universal function in thermo-elastic solids", Arch. Rat. Mech. Anal., 41(5), 319-332. https://doi.org/10.1007/BF00281870
- Prasad, R., Kumar, R. and Mukhopadhyay, S. (2010), "Propagation of harmonic plane waves under thermoelasticity with dual-phase-lags", Int. J. Eng. Sci., 48(12), 2028-2043. https://doi.org/10.1016/j.ijengsci.2010.04.011
- Prasad, R., Kumar, R. and Mukhopadhyay, S. (2011), "Effects of phase lags on wave propagation in an infinite solid due to a continuous line heat source", Acta Mech., 217(3-4), 243-256. https://doi.org/10.1007/s00707-010-0389-3
- Tzou, D.Y. (1995a), "A unified field approach for heat conduction from macro- to micro-scales", J. Heat Transfer, 117(1), 8-16. https://doi.org/10.1115/1.2822329
- Tzou, D.Y. (1995b), "Experimental support for the Lagging behavior in heat propagation", J. Thermophys. Heat Transfer, 9(4), 686-693. https://doi.org/10.2514/3.725
- Tzou, D.Y. (1996), Macro-to-Microscale Heat Transfer: The Lagging Behavior, Taylor & Francis, Washington, D.C., USA.
- Wang, Q. and Wang, C.M. (2007), "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes", Nanotech., 18(7), 075702. https://doi.org/10.1088/0957-4484/18/7/075702
- Zenkour, A.M. (2006), "Steady-state thermoelastic analysis of a functionally graded rotating annular disk", Int. J. Struct. Stab. Dynam., 6(4), 1-16. https://doi.org/10.1142/S0219455406001800
- Zenkour, A.M. (2014), "On the magneto-thermo-elastic responses of FG annular sandwich disks", Int. J. Eng. Sci., 75, 54-66. https://doi.org/10.1016/j.ijengsci.2013.11.001
- Zenkour, A.M. and Abouelregal, A.E. (2014a), "The effect of two temperatures on a FG nanobeam induced by a sinusoidal pulse heating", Struct. Eng. Mech., Int. J., 51(2), 199-214. https://doi.org/10.12989/sem.2014.51.2.199
- Zenkour, A.M. and Abouelregal, A.E. (2014b), "Effect of harmonically varying heat on FG nanobeams in the context of a nonlocal two-temperature thermoelasticity theory", Eur. J. Comput. Mech., 23(1-2), 1-14.
- Zenkour, A.M. and Abouelregal, A.E. (2014c), "Vibration of FG nanobeams induced by sinusoidal pulse heating via a nonlocal thermoelastic model", Acta Mech., 225(12), 3409-3421. https://doi.org/10.1007/s00707-014-1146-9
피인용 문헌
- Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating vol.87, 2017, https://doi.org/10.1016/j.physe.2016.10.048
- A DPL model of photo-thermal interaction in an infinite semiconductor material containing a spherical hole vol.133, pp.1, 2018, https://doi.org/10.1140/epjp/i2018-11814-6
- Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.357
- A hybrid inverse method for small scale parameter estimation of FG nanobeams vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.1119
- Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
- Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.791
- Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage vol.37, pp.3, 2016, https://doi.org/10.1007/s10483-016-2039-6
- The Effect of Relaxation Times on Thermoelastic Damping in a Nanobeam Resonator vol.04, pp.02, 2016, https://doi.org/10.1142/S2251237316500015
- Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam vol.5, pp.2, 2015, https://doi.org/10.12989/anr.2017.5.2.141
- Vibration Analysis of Smart Embedded Shear Deformable Nonhomogeneous Piezoelectric Nanoscale Beams based on Nonlocal Elasticity Theory vol.18, pp.2, 2015, https://doi.org/10.5139/ijass.2017.18.2.255
- A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer vol.25, pp.2, 2015, https://doi.org/10.12989/scs.2017.25.2.177
- Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities vol.5, pp.4, 2017, https://doi.org/10.12989/anr.2017.5.4.393
- Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles vol.27, pp.2, 2015, https://doi.org/10.12989/scs.2018.27.2.201
- On axial buckling and post-buckling of geometrically imperfect single-layer graphene sheets vol.33, pp.2, 2015, https://doi.org/10.12989/scs.2019.33.2.261
- A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with ene vol.73, pp.3, 2015, https://doi.org/10.12989/sem.2020.73.3.287
- Numerical investigation on scale-dependent vibrations of porous foam plates under dynamic loads vol.7, pp.2, 2020, https://doi.org/10.12989/smm.2020.7.2.085
- Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method vol.76, pp.3, 2015, https://doi.org/10.12989/sem.2020.76.3.413
- Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.243
- Long-term behavior of multilayered angle-ply plate structures with viscoelastic interlayer by state space method vol.171, pp.None, 2022, https://doi.org/10.1016/j.tws.2021.108766