DOI QR코드

DOI QR Code

Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation

  • Received : 2014.03.07
  • Accepted : 2014.09.29
  • Published : 2015.04.25

Abstract

This paper aims to present an alternative analytical method for transient vibration analysis of doubly-curved laminated shells subjected to dynamic loads. In the method proposed, the governing differential equations of laminated shell are derived using the dynamic version of the principle of virtual displacements. The governing equations of first order shear deformation laminated shell are obtained by Navier solution procedure. Time-dependent equations are transformed to the Laplace domain and then Laplace parameter dependent equations are solved numerically. The results obtained in the Laplace domain are transformed to the time domain with the help of modified Durbin's numerical inverse Laplace transform method. Verification of the presented method is carried out by comparing the results with those obtained by Newmark method and ANSYS finite element software. Also effects of number of laminates, different material properties and shell geometries are discussed. The numerical results have proved that the presented procedure is a highly accurate and efficient solution method.

Keywords

References

  1. Brigham, E.O. (1974), The Fast Fourier Transform, Prentice-Hall, Inc., Englewood Cliffs, NJ, USA.
  2. Chun, L. and Lam, K.Y. (1995), "Dynamic analysis of clamped laminated curved panels", Compos. Struct., 30(4), 389-398. https://doi.org/10.1016/0263-8223(94)00056-5
  3. Civalek, O. (2006), "Free vibration analysis of composite conical shells using the discrete singular convolution algorithm", Steel Compos. Struct., Int. J., 6(4), 353-366. https://doi.org/10.12989/scs.2006.6.4.353
  4. Correia, I.F.P., Barbosa, J.I. and Mota, C.A. (2000), "A finite element semi-analytical model for laminated axisymmetric shells: statics, dynamics and buckling", Comput. Struct., 76(1-3), 299-317. https://doi.org/10.1016/S0045-7949(99)00165-0
  5. Dogan, A. and Arslan, H.M. (2012), "Investigation of the effect of shell plan-form dimensions on mode-shapes of the laminated composite cylindrical shallow shells using SDSST and FEM", Steel Compos. Struct., Int. J., 12(4), 303-324. https://doi.org/10.12989/scs.2012.12.4.303
  6. Durbin, F. (1974), "Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate's method", Comput. J., 17(4), 371-376. https://doi.org/10.1093/comjnl/17.4.371
  7. Fares, M.E, Youssif, Y.G. and Alamir, A.E. (2003), "Minimization of the dynamic response of composite laminated doubly curved shells using design and control optimization", Compos. Struct., 59(3), 369-383. https://doi.org/10.1016/S0263-8223(02)00241-6
  8. Ganapathi, M., Patel, B.P. and Pawargi, D.S. (2002), "Dynamic analysis of laminated cross-ply composite non-circular thick cylindrical shells using higher-order theory", Int. J. Solids Struct., 39(24), 5945-5962. https://doi.org/10.1016/S0020-7683(02)00495-X
  9. Gong, S.W., Shim, V.P.W. and Toh, S.L. (1995), "Impact response of laminated shells with orthogonal curvatures", Compos. Eng., 5(3), 257-275. https://doi.org/10.1016/0961-9526(94)00096-R
  10. Her, S.-C. and Liang, Y.-C. (2004), "The finite element analysis of composite laminates and shell structures subjected to low velocity impact", Compos. Struct., 66(1-4), 277-285. https://doi.org/10.1016/j.compstruct.2004.04.049
  11. Jung, W.-Y. and Han, S.-C. (2014), "Transient analysis of FGM and laminated composite structures using a refined 8-node ANS shell element", Compos. Part B Eng., 56, 372-383. https://doi.org/10.1016/j.compositesb.2013.08.044
  12. Krishnamurthy, K.S., Mahajan, P. and Mittal, R.K. (2001), "A parametric study of the impact response and damage of laminated cylindrical composite shells", Compos. Sci. Technol., 61(12), 1655-1669. https://doi.org/10.1016/S0266-3538(01)00015-X
  13. Krishnamurthy, K.S., Mahajan, P. and Mittal, R.K. (2003), "Impact response and damage in laminated composite cylindrical shells", Compos. Struct., 59(1), 15-36. https://doi.org/10.1016/S0263-8223(02)00238-6
  14. Lee, Y.S., Choi, M.H. and Kim, J.H. (2003), "Free vibrations of laminated composite cylindrical shells with an interior rectangular plate", J. Sound. Vib., 265(4), 795-817. https://doi.org/10.1016/S0022-460X(02)01236-1
  15. Li, J. and Hua, H. (2009), "Transient vibrations of laminated composite cylindrical shells exposed to underwater shock waves", Eng. Struct., 31(3), 738-748. https://doi.org/10.1016/j.engstruct.2008.11.018
  16. Narayanan, G.V. (1979), "Numerical operational methods in structural dynamics", Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA.
  17. Park, T., Kim, K. and Han, S. (2005), "Linear static and dynamic analysis of laminated composite plates and shells using a 4-node quasi-conforming shell element", Compos. Part B. Eng., 37(2-3), 237-248. https://doi.org/10.1016/j.compositesb.2005.05.007
  18. Prusty, B.G. and Satsangi, S.K. (2001), "Finite element transient dynamic analysis of laminated stiffened shells", J. Sound Vib., 248(2), 215-233. https://doi.org/10.1006/jsvi.2001.3678
  19. Reddy, J.N. (1984), "Exact solutions of moderately thick laminated shells", J. Eng. Mech., 110(5), 794-809. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:5(794)
  20. Reddy, J.N. (2004), Mechanics of laminated composite plate and shells: theory and analysis, (Second Ed.), CRC Press, Boca Raton, FL, USA.
  21. Sahan, M.F. (2012), "Dynamic analysis of viscoelastic composite plates in the Laplace domain", Ph.D. Thesis, University of Cukurova, Adana, Turkey.
  22. Saviz, M.R. and Mohammadpourfard, M. (2010), "Dynamic analysis of a laminated cylindrical shell with piezoelectric layers under dynamic loads", Finite Elem. Anal. Des., 46(9), 770-781. https://doi.org/10.1016/j.finel.2010.04.007
  23. Shim, V.P.W., Toh, S.L. and Gong, S.W. (1996), "The elastic impact response of glass/epoxy laminated ogival shells", Int. J. Impact Engng., 18(6), 633-655. https://doi.org/10.1016/0734-743X(95)00061-E
  24. Sofiyev, A.H. (2003), "Torsional buckling of cross-ply laminated orthotropic composite cylindrical shells subject to dynamic loading", Eur. J. Mech. - A/Solids, 22(6), 943-951. https://doi.org/10.1016/S0997-7538(03)00090-1
  25. Swaddiwudhipong, S. and Liu, Z.S. (1997), "Response of laminated composite plates and shells", Compos. Struct., 37(1), 21-32. https://doi.org/10.1016/S0263-8223(97)00051-2
  26. Temel, B. (2003), "Transient analysis of viscoelastic helical rods subject to time-dependent loads", Int. J. Solids Struct., 41(5-6), 1605-1624. https://doi.org/10.1016/j.ijsolstr.2003.09.054
  27. Temel, B. and Sahan, M.F. (2013), "An alternative solution method for the damped response of laminated Mindlin plates", Compos. Part B. Eng., 47, 107-117. https://doi.org/10.1016/j.compositesb.2012.10.039
  28. Temel, B. and Sahan, M.F. (2013), "Transient analysis of orthotropic viscoelastic thick plates in the Laplace domain", Eur. J. Mech. - A/Solid, 37, 96-105. https://doi.org/10.1016/j.euromechsol.2012.05.008
  29. Timarci, T. and Soldatos, K.P. (2000), "Vibrations of angle-ply laminated circular cylindrical shells subjected to different sets of edge boundary conditions", J. Eng. Math., 37(1-3), 211-230. https://doi.org/10.1023/A:1004794513444
  30. Toh, S.L., Gong, S.W. and Shim, V.P.W. (1995), "Transient stresses generated by low velocity impact on orthotropic laminated cylindrical shells", Compos. Struct., 31(3), 213-228. https://doi.org/10.1016/0263-8223(95)00104-2
  31. Topal, U. (2013), "Pareto optimum design of laminated composite truncated circular conical shells", Steel Compos. Struct., Int. J., 14(4), 397-408. https://doi.org/10.12989/scs.2013.14.4.397
  32. Vaziri, R., Quan, X. and Olson, M.D. (1996), "Impact analysis of laminated composite plates and shells by super finite elements", Int. J. Impact Eng., 18(7-8), 765-782 https://doi.org/10.1016/S0734-743X(96)00030-9
  33. Wu, C.-P., Tarn, J.-Q. and Chi, S.-M. (1996), "An asymptotic theory for dynamic response of doubly curved laminated shells", Int. J. Solids Struct., 33(26), 3813-3841. https://doi.org/10.1016/0020-7683(95)00213-8

Cited by

  1. Viscoelastic damped response of cross-ply laminated shallow spherical shells subjected to various impulsive loads vol.21, pp.4, 2017, https://doi.org/10.1007/s11043-017-9339-y
  2. Free vibration analysis of composite cylindrical shells with non-uniform thickness walls vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.1087
  3. Creep analysis of the FG cylinders: Time-dependent non-axisymmetric behavior vol.28, pp.3, 2015, https://doi.org/10.12989/scs.2018.28.3.331
  4. Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory vol.30, pp.6, 2015, https://doi.org/10.12989/scs.2019.30.6.567
  5. Analysis of thick-walled spherical shells subjected to external pressure: Elastoplastic and residual stress analysis vol.234, pp.1, 2020, https://doi.org/10.1177/1464420719882958