Acknowledgement
Supported by : Japan Society for the Promotion of Science
References
- Al-Tabbaa, A. and Wood, D.M. (1987), "Some measurements of the permeability of kaolin", Geotechnique, 37(4), 499-503. https://doi.org/10.1680/geot.1987.37.4.499
- Ariake Bay Research Group (1965), Quaternary System of the Ariake and Shiranui Bay Areas, with Special Reference to the Ariake Soft Clay, Association for Geological Collaboratoration in Japan, Japan.
- ASTM (2004), D4404-84: Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry, ASTM International, West Conshohocken, PA, USA.
- ASTM (2006), D4186-06: Standard test method for one-dimensional consolidation properties of saturated cohesive soils using controlled-strain loading, ASTM International, West Conshohocken, PA, USA.
- Cetin, H. (2004), "Soil-particle and pore orientations during consolidation of cohesive soils", Engineering Geology, 73(1-2), 1-11. https://doi.org/10.1016/j.enggeo.2003.11.006
- Chai, J.C., Jia, R. and Hino, T. (2012), "Anisotropic consolidation behavior of Ariake clay from three different CRS tests", Geotech. Test. J., 35(6), 845-853. https://doi.org/10.1520/GTJ103848
- Clennell, M.B., Dewhurst, D.N., Brown, K.M. and Westbrook, G.K. (1999), "Permeability anisotropy of consolidated clays", In: Muds and Mudstones: Physical and Fluid-flow Properties (Special Publications), Geological Society of London, London, UK, 158(1), pp. 79-96. https://doi.org/10.1144/GSL.SP.1999.158.01.07
- Delage, P. (2010), "A microstructure approach to the sensitivity and compressibility of some Eastern Canada sensitive clays", Geotechnique, 60(5), 353-368. https://doi.org/10.1680/geot.2010.60.5.353
- Delage, P. and Lefebvre, G. (1984), "Study of the structure of a sensitive Champlain clay and its evolution during consolidation", Can. Geotech. J., 21(1), 21-35. https://doi.org/10.1139/t84-003
- Diamond, S. (1970), "Pore size distribution in clays", Clay Clay. Miner., 18, 7-23. https://doi.org/10.1346/CCMN.1970.0180103
- Djeran-Maigre, I., Tessier, D., Grunberger, D., Velde, B. and Vasseur, G. (1998), "Evolution of microstructures and of macroscopic properties of some clays during experimental compaction", Mar. Petrol. Geol., 15(2), 109-128. https://doi.org/10.1016/S0264-8172(97)00062-7
- Griffiths, F.J. and Joshi, R.C. (1989), "Change in pore size distribution due to consolidations of clays", Geotechnique, 39(1), 159-167. https://doi.org/10.1680/geot.1989.39.1.159
- Hattab, M. and Favre, J.L. (2010), "Anaysis of the experimental compressibility of deep water marine sediments from the Gulf of Guinea", Mar. Petrol. Geol., 27(2), 486-499. https://doi.org/10.1016/j.marpetgeo.2009.11.004
- Hattab, M. and Fleureau, J.M. (2010), "Experimental study of kaolin particle orientation mechanism", Geotechnique, 60(5), 323-331. https://doi.org/10.1680/geot.2010.60.5.323
- Hattab, M. and Fleureau, J.M. (2011), "Experimental analysis of kaolinite particle orientation during triaxial path", Int. J. Numer. Anal. Met. Geomech., 35(8), 947-968. https://doi.org/10.1002/nag.936
- Hattab, M., Bouziri-Adrouche, S. and Fleureau, J.M. (2010), "Evolution of microtexture in a kaolinitic matrix path of axisymmetric triaxial", Can. Geotech. J., 47(1), 34-48. https://doi.org/10.1139/T09-098
- Hattab, M., Hammad, T., Fleureau, J.M. and Hicher, P.Y. (2013), "Behavior of a sensitive sediment: microstructural investigation", Geotechqiue, 63(1), 71-84. https://doi.org/10.1680/geot.10.P.104
- Hicher, P.Y., Wahyudi, H. and Tessier, D. (2000), "Microstructural analysis of inherent and induced anisotropy in clay", Mech. Cohes.-Frict. Mat., 5(5), 341-371. https://doi.org/10.1002/1099-1484(200007)5:5<341::AID-CFM99>3.0.CO;2-C
- Jia, R., Chai, J.C., Hino, T. and Hong, Z.S. (2010), "Strain-rate effect on consolidation behavior of Ariake clay", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 163(5), 267-277. https://doi.org/10.1680/geng.2010.163.5.267
- Jia, R., Chai, J.C. and Hino, T. (2013), "Interpretation of coefficient of consolidation from CRS test results", Geomech. Eng., Int. J., 5(1), 57-70. https://doi.org/10.12989/gae.2013.5.1.057
- Kang, M.S., Watabe, Y. and Tsuchida, T. (2003), "Effect of drying process on the evaluation of microstructure of clays using scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP)", Proceedings of the 13th International Offshore and Polar Engineering Conference, Honolulu, HI, USA, May.
- Lambe, T.W. and Whitman, R.V. (1969), Soil Mechanics, John Wiley & Sons, New York, NY, USA.
- Lapierre, C., Leroueil, S. and Locat, J. (1990), "Mercury intrusion and permeability of Louiseville clay", Can. Geotech. J., 27(6), 761-773. https://doi.org/10.1139/t90-090
- Leroueil, S., Bouclin, G., Tavenas, F., Bergeron, L. and Rochelle, P.L. (1990), "Permeability anisotropy of natural clays as a function of strain", Can. Geotech. J., 27(6), 568-579. https://doi.org/10.1139/t90-072
- Little, J.A., Wood, D.M., Paul, M.A. and Bouazza, A. (1992), "Some laboratory measurements of permeability of Bothkennar clay in relation to soil fabric", Geotechnique, 42(2), 355-361. https://doi.org/10.1680/geot.1992.42.2.355
- Martin, R.T. and Ladd, C.C. (1975), "Fabric of consolidated kaolinite", Clays Clay. Miner., 23(1), 17-25. https://doi.org/10.1346/CCMN.1975.0230103
- Mitchell, J.K. and Soga, K. (2005), Fundamentals of Soil Behavior, Wiley, New York, NY, USA.
- Monroy, R., Zdravkovic, L. and Ridley, A. (2010), "Evolution of microstructure in compacted London Clay during wetting and loading", Geotechnique, 60(2), 105-119. https://doi.org/10.1680/geot.8.P.125
- Ohtsubo, M., Egashira, K. and Kashima, K. (1995), "Depositional and post-depositional geochemistry and its correlation with geotechnical properties of the marine clays in Ariake bay", Geotechnique, 45(3), 509-523. https://doi.org/10.1680/geot.1995.45.3.509
- Pusch, R. (1970), "Microstructural changes in soft quick clay at failure", Can. Geotech. J., 7(1), 1-7. https://doi.org/10.1139/t70-001
- Sivakumar, V., Doran, I.G. and Graham, J. (2002), "Particle orientation and its influence on the mechanical behavior of isotropically consolidated reconstituted clay", Eng. Geol., 66(3-4), 197-209. https://doi.org/10.1016/S0013-7952(02)00040-6
- Tanaka, H., Shiwakoti, D.R., Omukai, N., Rito, F., Locat, J. and Tanaka, M. (2003), "Pore Size distribution of clayey soils measured by mercury intrusion Porosimetry and its relation to hydraulic conductivity", Soils Found., 43(6), 63-73. https://doi.org/10.3208/sandf.43.6_63
- Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice, Wiley, New York, NY, USA.
Cited by
- Characteristics of clay deposits in Saga Plain, Japan vol.170, pp.6, 2017, https://doi.org/10.1680/jgeen.16.00197
- Equivalent ‘smear’ effect due to non-uniform consolidation surrounding a PVD vol.67, pp.5, 2017, https://doi.org/10.1680/jgeot.16.P.087
- Properties of soil after surcharge or vacuum preloading vol.169, pp.3, 2016, https://doi.org/10.1680/jgrim.15.00028
- Finite Element Analysis of Vacuum Consolidation With Modified Compressibility and Permeability Parameters vol.3, pp.2, 2017, https://doi.org/10.1007/s40891-017-0092-8
- Pore pressures induced by piezocone penetration vol.53, pp.3, 2016, https://doi.org/10.1139/cgj-2015-0206
- Effect of pore water chemistry on anisotropic behavior of clayey soil and possible application in underground construction vol.1, pp.2, 2016, https://doi.org/10.1016/j.undsp.2016.11.002
- Temporal variation in the permeability anisotropy behavior of the Malan loess in northern Shaanxi Province, China: an experimental study vol.78, pp.15, 2019, https://doi.org/10.1007/s12665-019-8449-z
- Numerical study on the effect of crack network representation on water content in cracked soil vol.21, pp.6, 2020, https://doi.org/10.12989/gae.2020.21.6.537
- Compressibility and Microstructure Evolution of Different Reconstituted Clays during 1D Compression vol.20, pp.10, 2020, https://doi.org/10.1061/(asce)gm.1943-5622.0001830
- Effect of chemical additives on the consolidation behavior of slurries vol.39, pp.7, 2015, https://doi.org/10.1080/1064119x.2020.1762809
- Changes in the Permeability and Permeability Anisotropy of Reconstituted Clays under One-Dimensional Compression and the Corresponding Micromechanisms vol.22, pp.2, 2015, https://doi.org/10.1061/(asce)gm.1943-5622.0002260
- Evolution of Shear Band in Plane Strain Compression of Naturally Structured Clay with a High Sensitivity vol.12, pp.3, 2022, https://doi.org/10.3390/app12031180