References
- Acar, B.Y. and El-Tahir, A.E. (1986), "Low strain dynamic properties of artificially cemented sands", J. Geotech. Eng. Div., ASCE, 112(11), 1001-1015. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1001)
- Ahmad, I. (1993), "Laboratory study on properties on rubber soils", Report No. FHWA/IN/JHRP-93/4, Joint Highway Research Project, Indiana Department of Transportation, USA.
- Bosscher, P.J., Edil, T. and Kuraoka, S. (1997), "Designof highway embankments using tire chips", J Geotech. Geoenviron. Eng., ASCE, 123(4), 295-304. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(295)
- Bressani, L.A. (1990), "Experimental properties ofbonded soils", Ph.D. Thesis, University of London, London, UK.
- Burland, J.B. and Symes, M. (1982), "A simple axial displacement gauge for use in the triaxial apparatus", Geotechnique, 32(1), 62-65. https://doi.org/10.1680/geot.1982.32.1.62
- Cabalar, A.F. (2010), "Applications of the triaxial, resonant column and oedometer tests to the study of micaceous sands", Eng. Geol., 112(1-4), 21-28. https://doi.org/10.1016/j.enggeo.2010.01.004
- Clayton, C.R.I. and Heymann, G. (2001), "Stiffness of geomaterials at very small strains", Geotechnique, 51(3), 245-255. https://doi.org/10.1680/geot.2001.51.3.245
- Clayton, C.R.I. and Khatrush, S.A. (1986), "A new device for measuring local axial strains on triaxial specimens", Geotechnique, 36(4), 593-597. https://doi.org/10.1680/geot.1986.36.4.593
- Clough, G.W., Kuck, W.M. and Kasali, G. (1979), "Silicate-stabilized sands", J. Geotech. Eng. Div., ASCE, 105(1), 65-82.
- Clough, G.W., Sitar, N., Bachus, R.C. and Shaffi Rad, N. (1981), "Cemented sands under static loading", J. Geotech. Eng. Div., ASCE, 107(6), 799-817.
- Consoli, N.C., Vendruscolo, M.A., Fonini, A. and Rosa, F.D. (2009), "Fiber reinforcement effects on sand considering a wide cementation range", Geotext. Geomembr., 27(3), 196-203. https://doi.org/10.1016/j.geotexmem.2008.11.005
- Coop, M.R. and Atkinson, J.H. (1993), "The mechanics of cemented carbonate sands", Geotechnique, 43(1), 53-67. https://doi.org/10.1680/geot.1993.43.1.53
- Cuccovillo, T. and Coop, M.R. (1999), "On the mechanics of structured sands", Geotechnique, 49(6), 741-760. https://doi.org/10.1680/geot.1999.49.6.741
- Dickson, T.H., Dwyer, D.F. and Humphrey, D.N. (2001), "Prototypes tire-shred embankment construction", Transportation research record 1755, TRB, National Reserach Council, Washington, D.C., USA, pp. 160-167.
- Edil, T. and Bosscher, P. (1994), "Engineering properties of tire chips and soil mixtures", Geotech. Test. J., 17(4), 453-464. https://doi.org/10.1520/GTJ10306J
- Edincliler, A., Cabalar, A.F., Cagaty, A. and Cevik, A. (2012), "Triaxial compression behavior of sand and tire wastes using neural networks", Neural. Comput. Appl., 21(3), 441-452. https://doi.org/10.1007/s00521-010-0430-4
- Gens, A. and Nova, R. (1993), "Conceptual bases for a constitutive model for model for bonded soils andweak rocks", In: Geotechnical Engineering of Hard Soils-Soft Rocks, (A. Anagnostopoulos, R. Frank, Ni. Kalteziotis and F. Schlosser Eds.), Balkema, Rotterdam, The Netherlands, pp. 485-494.
- Hamidi, A. and Hooresfand, M. (2013), "Effect of fiber reinforcement on triaxial shear behaviour of cement treated sand", Geotext. Geomembr., 36, 1-9. https://doi.org/10.1016/j.geotexmem.2012.10.005
- Heymann, G., Clayton, C.R.I. and Reed, G.T. (1997), "Laser interferometry to evaluate the performanceof local displacement transducers", Geotechnique, 47(3), 399-405. https://doi.org/10.1680/geot.1997.47.3.399
- Huang, J.T. and Airey, D.W. (1998), "Properties of artificially cemented carbonate sand", J. Geotech. Geoenvir. Eng. Div., ASCE, 124(6), 492-499. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492)
- Humphrey, D. and Manion, W. (1992), "Properties of tire chips for lightweight fill", Grouting Soil Improv. Geosynth, 2, 1344-1355.
- Ismail, M.A., Joer, H.A. and Randolph, M.F. (2000), "Sample preparation technique for artificially cemented sands", Geotech. Test. J., ASTM., 23(1), 141-157. https://doi.org/10.1520/GTJ11039J
- Ismail, M.A., Joer, H.A., Randolph, M.F. and Meritt, A. (2002a), "Cementation of porous materials using calcite", Geotechnique, 52(5), 313-324. https://doi.org/10.1680/geot.52.5.313.38709
- Ismail, M.A., Joer, H.A., Sim, W.E. and Randolph, M.F. (2002b), "Effect of cement type on shear behaviour of cemented calcareous soil", J. Geotech. Geoenviron. Eng., 128(6), 520-529. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(520)
- Jardine, R.J., Symes, M.J. and Burland, J.B. (1984), "The measurement of soil stiffness in the triaxial apparatus", Geotechnique, 34(3), 323-340. https://doi.org/10.1680/geot.1984.34.3.323
- Lee, J.H., Saigado, R., Bernal, A. and Lovell, C.W. (1999), "Shredded tires and rubber-sand as lightweight backfill", J Geotech Geoenviron Eng, 125, 132-141. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(132)
- Leroueil, S. and Vaughan, P.R. (1990), "The generaland congruent effects of structure in natural soils and weak rocks", Geotechnique, 40(3), 467-488. https://doi.org/10.1680/geot.1990.40.3.467
- Liu, M.D. and Carter, J.P. (1999), "Virgin compression of structured soils", Geotechnique, 49(1), 43-57. https://doi.org/10.1680/geot.1999.49.1.43
- Liu, M.D. and Carter, J.P. (2000), "Modelling the destructuring of soils during virgin compression", Geotechnique, 50(4), 479-483. https://doi.org/10.1680/geot.2000.50.4.479
- Maccarini, M. (1987), "Laboratory studies of weakly bonded artificial soil", Ph.D. Thesis, University of London, London, UK.
- Malandraki, V. (1994), "The engineering behaviour of a weakly bonded artificial soil", Ph.D. Thesis, University of Durham, Durham, UK.
- Malandraki, V. and Toll, D.G. (2001), "Triaxial tests on weakly bonded soil with changes in stress path", J. Geotech. Geoenviron. Eng., 127(3), 282-291. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(282)
- Masad, E., Taha, R., Ho, C. and Papagiannakis, T. (1996), "Engineering properties of tire/soil mixtures as a lightweight fill material", Geotech.Test. J., 19(3), 297-304. https://doi.org/10.1520/GTJ10355J
- Monkul, M.M. and Ozden, G. (2007), "Compressional behavior of clayey sand and transition fines content", Eng. Geol., 89(3-4), 195-205. https://doi.org/10.1016/j.enggeo.2006.10.001
- Moo-Young H., Sellasie, K., Zeroka, D. and Sabnis, G. (2003), "Physical and chemical properties of recycled tire shreds for use in construction", J. Geotech. Geoenviron. Eng., ASCE, 129(10), 921-929.
- Muszynski, M.R. and Stanley, J.V. (2012), "Particle shape estimates of uniform sands: visual and automated methods comparison", J. Mater. Civ. Eng., 24(2), 194-206. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000351
- Saxena, S.K. and Lastrico, R.M. (1978), "Static properties of lightly cemented sand", J. Geotech. Eng. Div., ASCE, 104(12), 1449-1464.
- Schnaid, F., Prietto, P.D. and Consoli, N.C. (2001), "Characterization of cemented sand in triaxial compression", J. Geotech. Geoenviron. Eng., ASCE, 127(10), 857-868. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857)
- Tatlisoz, N., Benson, C.H. and Edil, T. (1997), "Effect of fines on mechanical properties of soil-tire chip mixtures", In: Testing Soil Mixed with Waste or Recycled Materials, (Edited by M.A. Wasemiller and K.B. Hoddinott), ASTM International, pp. 93-108.
- Terzaghi, K. and Peck, R.B. (1962), Soil Mechanics in Engineering Practice, John Wiley & Sons Inc., (12th Edition), USA.
- Thevanayagam, S. (1998), "Effect of fines on confining stress on undrained shear strength of silty sands", J. Geotech. Geoenviron. Eng., ASCE, 124(6), 479-491. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(479)
- Tweedie, J.J., Humphrey, D.N. and Sandford, T.C. (1998), "Full scale field trials of tire shreds as lightweight retaining wall backfill, at-rest conditions", Transp. Res. Rec., 1619, 64-71. https://doi.org/10.3141/1619-08
- Vesic, AB. and Clough, G.W. (1968), "Behaviour of granular materials under high stresses", J. SMFE, ASCE, 94(8M-3), 661-688.
- Zornberg, J.G., Cabral, A.R. and Viratjandr, C. (2004), "Behaviour of tire shred-sand mixtures", Can. Geotech. J., 41(2), 227-241. https://doi.org/10.1139/t03-086
Cited by
- Effect of cyclic loading on the compressive strength of soil stabilized with bassanite–tire mixture vol.20, pp.1, 2018, https://doi.org/10.1007/s10163-017-0617-1
- Influence of crumb rubber on the geotechnical properties of clayey soil 2018, https://doi.org/10.1007/s10668-017-0005-y
- Experimental and numerical investigation of footing behaviour on multi-layered rubber-reinforced soil 2016, https://doi.org/10.1080/19648189.2016.1262288
- Application of waste rubber to reduce the settlement of road embankment vol.9, pp.2, 2015, https://doi.org/10.12989/gae.2015.9.2.219
- Seismic Resistance and Displacement Mechanism of the Concrete Footing vol.2019, pp.1875-9203, 2019, https://doi.org/10.1155/2019/5498505
- Mechanical properties of expanded polystyrene beads stabilized lightweight soil vol.13, pp.3, 2015, https://doi.org/10.12989/gae.2017.13.3.459
- Free strain analysis of the performance of vertical drains for soft soil improvement vol.13, pp.6, 2017, https://doi.org/10.12989/gae.2017.13.6.963
- Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash vol.14, pp.6, 2015, https://doi.org/10.12989/gae.2018.14.6.533
- Effect of Stress Rotation and Intermediate Stress Ratio on Monotonic Behavior of Granulated Rubber-Sand Mixtures vol.32, pp.4, 2015, https://doi.org/10.1061/(asce)mt.1943-5533.0003054
- Strength and deformation behaviour of sand-rubber mixture vol.15, pp.9, 2015, https://doi.org/10.1080/19386362.2020.1812193