References
- Allen, J. B. and Rabiner, L. R. (1977). A unified approach to short-time Fourier analysis and synthesis, Proceedings of the IEEE, 65, 1558-1564. https://doi.org/10.1109/PROC.1977.10770
- Auger, F. and Flandrin, P. (1995). Improving the readability of time-frequency and time-scale representations by the reassignment method, IEEE Transactions on Signal Processing, 43, 1068-1089. https://doi.org/10.1109/78.382394
- Claasen, T. and Mecklenbrauker, W. F. C. (1980). The Wigner distribution: A tool for time frequency signal analysis, Philips Journal of Research, 35, 217-250.
- Daubechies, I., Lu, J. and Wu, H. T. (2011). Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool, Applied and Computational Harmonic Analysis, 30, 243-261. https://doi.org/10.1016/j.acha.2010.08.002
- Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society: Series B, 39, 1-38.
- Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown smoothing via wavelet shrinkage, Journal of the American Statistical Association, 90, 1200-1224. https://doi.org/10.1080/01621459.1995.10476626
- Flandrin, P. (1999). Time-Frequency/Time-Scale Analysis, Academic Press.
- Huang, N. E., Shen, Z., Long, S. R., Wu, M. L., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H. (1998). The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis, Proceedings of the Royal Society of London A, 454, 903-995. https://doi.org/10.1098/rspa.1998.0193
- Kim, D., Lee, Y. and Oh, H.-S. (2006). Hierarchical-likelihood-based wavelet method for denoting signals with missing data, IEEE Signal Processing Letters, 13, 361-364. https://doi.org/10.1109/LSP.2006.871713
- Lee, T. C. M. and Meng, X. L. (2005). A self-consistent wavelet method for denoising images with missing pixels, In Proceedings of the 30th IEEE International Conference on Acoustics, Speech, and Signal Processing, 2, 41-44.
- Mallat, S. (1999). A Wavelet Tour of Signal Processing, Academic Press.
- Meignen, S., Oberlin, T. and McLaughlin, S. (2012). A new algorithm for multicomponent signals analysis based on synchrosqueezing: With an application to signal sampling and denoising, IEEE Transactions on Signal Processing, 60, 5787-5798. https://doi.org/10.1109/TSP.2012.2212891
- Nason, G. P. (1996). Wavelet shrinkage by cross-validation, Journal of the Royal Statistical Society: Series B, 58, 463-479.
- Oh, H.-S., Kim, D. and Lee, Y. (2009). Cross-validated wavelet shrinkage, Computational Statistics, 24, 497-512. https://doi.org/10.1007/s00180-008-0143-7
- Thakur, G., Brevdo, E., Fuckar, N. S. and Wu, H.-T. (2013). The synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications, Signal Processing, 93, 1079-1094. https://doi.org/10.1016/j.sigpro.2012.11.029
- Thakur, G. and Wu, H.-T. (2011). Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples, SIAM Journal on Mathematical Analysis, 43, 2078-2095. https://doi.org/10.1137/100798818
- Yang, H. and Ying, L. (2013). Synchrosqueezed wave packet transform for 2D mode decomposition, SIAM Journal on Imaging Sciences, 6, 1979-2009. https://doi.org/10.1137/120891113