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Abstract
A 8-week trial was conducted to evaluate the effects of photoperiod manipulation on the growth performance and hematological 
parameters of juvenile Caspian roach, Rutilus rutilus caspicus (average weight 1.46 ± 0.12 g mean±SD) reared under five pho-
toperiods (24 h Light, 24L; 18 h Light & 6 h Dark, 18L:6D; 12 h Light & 12 h Dark, 12L:12D; 6 h Light & 18 h Dark, 6L:18D; 
24 h Dark, 24D) with constant light intensity 1,500 lx on the water surface. Triplicate of 20 fish were allocated into each of 15 
fiberglass tanks of 50 L capacity and they were fed three times per day with the commercial feed (SFK, Co., Sari - Iran) contains 
50.0% protein and 10.5% lipid. At the end of experimental period, final body weight, weight gain and specific growth rates of fish 
exposed to 24L were significantly higher than those of fish exposed to 12L:12D, 6L:18D and 24D (P < 0.05). Red blood cell and 
hemoglobin of fish exposed to 24L were significantly higher than those of fish exposed to 24D. No significant difference observed 
in hematocrit, white blood cell and plasma glucose among the different treatments groups. Therefore, these results demonstrated 
that the growth performance of juvenile Caspian roach can be significantly stimulated by using 24L and 18L:6D photoperiods 
without any measurable significant stress response such as plasma glucose concentration.
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Introduction

The Caspian roach, Rutilus rutilus caspicus, belongs to 
Cyprinidae is one of the most economically important and 
valuable telostei in the Caspian Sea. This kind of fish exist in 
the southern part of the Caspian Sea especially Iran’s shores 
(Rameshguru et al., 2011). Knowledge of the optimal environ-
mental conditions for fish growth during their early life stage 
is necessary to enhance the yields and reduce costs in culture 
production (Lambert and Dutil, 2001; Shan et al., 2008). The 

manipulation of environmental factors such as temperature, 
salinity and photoperiod currently is used to modulate fish 
growth in culture (Jobling, 1994). Among them, photoperiod 
has been used successfully to improve the larval (Hart et al., 
1996), juvenile and adult growth of some species (Simensen 
et al., 2000; Biswas and Takeuchi, 2003; Petit et al., 2003; 
Biswas et al., 2005, 2006). When photoperiod is increased, 
fish may adjust to the new photoperiod by displaying higher 
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nected to an air pump, and 20% of the water was renewed dai-
ly with receiving filtered brackish water from the center tank. 
Fish were fed at 5% of the total stocked biomass daily with a 
commercial diet (containing: crude protein 50.0%, crude lipid 
10.5%; SFK, Co., Sari - Iran). The total fish weight in each 
tank was determined every 2-week and daily feed rations were 
split into three equal amounts given at 09:00, 13:00 and 17:00 
hours to all culture tanks. 

Sampling and parameters estimation

At the termination of the feeding trial, fish were starved for 
24 h and the total number and  weight of fish in each tank 
was determined for calculation of weight gain (WG), specific 
growth rate (SGR), feed efficiency (FE), feed intake (FI) and 
survival. After obtaining the final total weight, five fish were 
randomly selected from each tank and blood samples were 
withdrawn from the caudal vein using a 26-gauge hypodermic 
needle on a 1-ml syringe and transferred to tubes that were 
kept on ice until centrifugation at 1,600 (g) for 10 min. He-
matocrit (PCV) was determined using the microhematocrit 
method (Brown, 1980) and hemoglobin (Hb) was measured 
by the cyanmethemoglobin procedure using Drabkin’s solu-
tion. Hb standard prepared from human blood (Sigma Chemi-
cal Co., St Louis, MO, USA) was used. Plasma glucose was 
measured by the enzymatic glucose-HK procedure (Sigma). 
We also calculated number of white blood cells (WBCs), and 
number of red blood cells (RBCs) according to Ranzani-Paiva 
et al. (2004). The rest of the fish were freeze-dried as whole 
body and held at −80°C until used for proximate composition 
analysis. The samples of diet and whole-fish body from each 
treatment were analyzed according to the standard methods of 
AOAC (2000) for moisture, protein, lipid, and ash. Moisture 
content of samples was estimated by drying oven at 135ºC for 
2 h to constant weight. Crude protein was determined using 
the Kjeldahl method (N × 6.25) after acid digestion. Crude 
lipid was determined by soxhlet extraction using the Soxtec 
system 1046 (Tacator AB, Hoganas, Sweden), and ash was 
determined by combusting dry samples in a muffle furnace at 
550 °C for 6 h. 

Statistical analysis 

Data were subjected to one-way analysis of variance test 
using Statistix 3.1 (Analytical Software, St Paul, MN, USA). 
When a significant treatment effect was observed, a Least 
Significant Difference test was used to compare means. Treat-
ment effects were considered significant at P < 0.05. 

Results

Table 1 shows the growth performance parameters of juve-
nile Caspian roach exposed to different photoperiod regimes. 

feeding activity, growth and feed utilization (Boehlert, 1981; 
Woiwode and Adelman, 1991). Photoperiod manipulation 
can regulate physiological functions of fish such as growth, 
survival, gonadal maturation, reproduction (Björnsson et al., 
2000; Ginés et al., 2003; Bonnet et al., 2007) and metabolism 
(Biswas and Takeuchi, 2003; Biswas et al., 2005, 2006; Taylor 
et al., 2006). In general, long photoperiod improves the perfor-
mance of fish, probably because of increased feed availability 
(Boeuf and Le Bail, 1999). For example, photoperiods longer 
than that of ambient conditions increased growth of larval rab-
bit fish, Siganus guttatus (Duray and Kohno, 1988), sea bass, 
Dicentrarchus labrax (Barahona-Fernandes, 1979; Ronzani 
Cerqueira and Chatain, 1991), barramundi, Lates calcarifer 
(Barlow et al., 1995), and greenback flounder, Rhombosolea 
tapirina (Hart et al., 1996). 

In order to improve production efficiency in hatcheries, it 
is important to optimize the conditions in which the fish are 
reared. These conditions can include the physical culture en-
vironment (temperature, salinity, light intensity and photope-
riod) and general nutritional parameters such as diet composi-
tion, ration and feeding frequency (Mohseni et al., 2006). The 
strategy of their rearing condition will help us to gain best 
results in their culture and can affect their growth and survival. 
However, there is no information on the effect of photoperiod 
manipulation on the growth performance of juvenile Caspian 
roach. Therefore, the aim of the present study was to inves-
tigate the effect of photoperiod manipulation on growth per-
formance and hematological parameters of juvenile Caspian 
roach, Rutilus rutilus caspicus, reared in the culture tanks.

Materials and Methods

Experimental design

Juvenile Caspian roach, Rutilus rutilus caspicus were ob-
tained from the Fish Nursery Center of Sijaval, Iran. At the 
beginning of the feeding trial, a total of 300 fish, averaging 
initial weight 1.46 ± 0.12 g, were carefully selected from the 
stock tanks and directly distributed into 15 tanks with 50 L 
volume of brackish water (20 fish/tank) to acclimate to the 
new rearing environment for 2 weeks at 12 h light: 12 h dark 
(12L:12D) photoperiod. After acclimation, five artificial pho-
toperiods with three replicate were established: i) 24 h Light, 
24L; ii) 18 h Light & 6 h Dark, 18L:6D; iii) 12 h Light & 12 
h Dark, 12L:12D; iv) 6 h Light & 18 h Dark, 6L:18D; and v) 
24 h Dark, 24D. Each set of three tanks for each photoperiod 
were illuminated with one 40 (W) fluorescent lamp with light 
intensity at 1,500 lx on the water surface. The periods of light 
and dark was contorted with black polyvinyl sheet on the cul-
ture tanks to inhibit light penetration from outside. During 8 
weeks of feeding trial, Average of water temperature, oxygen 
and pH were 26.5 ± 2°C, 6.5 ± 1.1 ppm and 7.5-8, respective-
ly. All tanks were continuously aerated using air-stones con-
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Whole-body proximate composition of juvenile Caspian 
roach exposed to different photoperiod regimes are shown in 
Table 2. There were no significant differences in whole-body 
protein, lipid, moisture and ash contents of fish among all 
treatments (P > 0.05). 

The hematological parameters of juvenile Caspian roach 
exposed to different photoperiod regimes are shown in Table 
3. RBC of fish reared under 24L and 18L:6D photoperiods 
was significantly higher than those of fish exposed under 

At the end of 8 weeks of experiment, FW, WG and SGR of 
fish exposed to 24L photoperiod were significantly higher than 
those of fish exposed under 12L:12D, 6L:18D and 24D photo-
periods (P < 0.05). However, there were no significant differ-
ences in FW, WG and SGR among fish reared under 24L and 
18L:6D photoperiods, or among those under 24D, 18L:6D, 
12L:12D and 6L:18D photoperiods (P > 0.05). There were no 
significant differences in FE, FI and survival of fish among all 
the experimental treatments (P > 0.05).

Table 1. Effect of different photoperiods on growth performance of juvenile Caspian roach Rutilus rutilus caspicus for 8 weeks1

L:D cycle2 IW3 FW4 WG5 SGR6 FE7 FI8 Survival (%)
24L 1.45 4.97a 240a 2.24a 2.46 7.10 96.0
18L:6D 1.48  4.73ab  224ab  2.12ab 2.48 6.57 96.3
12L:12D 1.46 4.59b 214b 2.03b 2.43 6.47 93.0
6L:18D 1.45 4.48b 206b 1.97b 2.40 6.28 95.0
24D 1.44 4.51b 208b 1.98b 2.48 6.13 94.0
Pooled SEM9 0.11           0.06         4.02            0.03 0.04 0.13     0.88

1Values in same column with different superscript are significantly different at P < 0.05.
224 h Light, 24 L; 18 h Light & 6 h Dark, 18L:6D; 12 h Light & 12 h Dark, 12L:12D; 6 h Light & 18 h Dark, 6L:18D; 24 h Dark, 24D.
3Average initial weight.
4Average final weight.
5Weight gain (%)= (final weight – initial weight) × 100 / initial weight.
6Specific growth rate (%) = 100 × (ln final weight – ln initial weight)/rearing period (days).
7Feed efficiency (%)= 100 × (weight gain /fed intake).
8Feed intake (g/fish)= dry feed consumed (g) / fish number.
9Pooled standard error of mean: SD/√n.

Table 2. Effect of different photoperiods on whole body proximate composition (% of DM basis) of juvenile Caspian roach Rutilus rutilus caspicus for 8 
weeks1

L:D cycle2 Crude protein (%) Crude lipid (%) Crude ash (%) Moisture (%)
24L 15.83 9.84 5.28 66.68
18L:6D 15.95 9.91 5.37 66.43
12L:12D 15.77 9.95 5.40 66.39
6L:18D 15.93 9.86 5.34 66.63
24D 15.96 9.81 5.22 66.54
Pooled SEM3   0.04 0.03 0.03   0.05

1Values in same column with different superscript are significantly different at P < 0.05.
224 h Light, 24 L; 18 h Light & 6 h Dark, 18L:6D; 12 h Light & 12 h Dark, 12L:12D; 6 h Light & 18 h Dark, 6L:18D; 24 h Dark, 24D.
3Pooled standard error of mean: SD/√n.

Table 3. Effect of different photoperiods on hematological parameters of juvenile Caspian roach Rutilus rutilus caspicus for 8 weeks1

L:D cycle2 RBC3 WBC4 PCV5 Hb6 Glu7

24L 1.84a 29467                  43               7.9a 82.00
18L:6D 1.71a 31067 42.66 6.5ab 85.00
12L:12D  1.59ab 24333 41.83   6.83ab 78.33
6L:18D  1.79ab 28800                 40.5   6.86ab 80.00
24D 1.48b 25067 42.63  5.63b 76.00
Pooled SEM8                   0.05         1411.58   1.12 0.33   1.64

1Values in same column with different superscript are significantly different at P < 0.05.
224 h Light, 24 L; 18 h Light & 6 h Dark, 18L:6D; 12 h Light & 12 h Dark, 12L:12D; 6 h Light & 18 h Dark, 6L:18D; 24 h Dark, 24D.
3RBC (×106): Red blood cell.
4WBC (/mm3): White blood cell.
5PCV (%): Hematocrit.
6Hb (g/dl): Hemoglobin.
7Glu (mg/dl): Glucose.
8Pooled standard error of mean: SD/√n.
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cells (Biswas et al., 2006). The PCV has also been shown to 
decrease under chronic stress (Barcellos et al., 2004). 

In addition, there was no significant difference in plasma 
glucose among the treatments in this study. Plasma glucose 
concentrations have long been used as indicators of stress 
in fish (Hattingh, 1976; Donaldson, 1981; Wedemeyer and 
McLeay, 1981). Yet, in many studies (Adams et al., 1985; 
Brown et al., 1986; Goss and Wood, 1988; Pottinger et al., 
2002), under stress plasma glucose either remained unchanged 
or took a longer duration of stress to show the change. The 
results demonstrated that photoperiod manipulation did not 
cause a significant acute stress response in juvenile caspian 
roach as the levels of different stress indicators in fish ex-
posed to different photoperiods. It has been demonstrated that 
chronic stress generally results in a higher elevation of corti-
sol and glucose concentrations in fish (Leonardi and Klempau, 
2003). In this study, plasma cortisol was not determined; how-
ever, plasma glucose concentration in the blood indicates that 
photoperiod manipulation did not appear to cause significant 
chronic stress response in the fish. Similarly, the findings for 
juvenile red sea bream, Pagrus major, also demonstrated that 
photoperiod manipulation did not cause significant plasma 
glucose concentration in fish exposed to different photoperi-
ods (Biswas et al., 2006). 

In conclusion, the results suggested that the growth perfor-
mance of juvenile caspian roach can be stimulated remarkably 
by the manipulated photoperiods used in 24L and 18L:6D pho-
toperiods. The higher growth performance under manipulated 
photoperiods may be attributed to the feeding time as well as 
to improved appetite, greater feed intake and higher feed con-
version efficiency. In addition, the photoperiod manipulation 
used in this study did not cause a significant stress response, 
and can therefore be used to stimulate the growth performance 
of juvenile Caspian roach, Rutilus rutilus caspicus. 
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