참고문헌
- Carne, T.G. and Dohmann, C.R. (1995), "A modal test design strategy for modal correlation", Proceedings of the 13th International Modal Analysis Conference, Schenectady, New York, USA.
- Chiu, P.L. and Lin, F.Y.S. (2004), "A simulated annealing algorithm to support the sensor placement for target location", Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, Ontario, Canada.
- Chow, H.M., Lam, H.F., Yin, T. and Au, S.K. (2010), "Optimal sensor configuration of a typical transmission tower for the purpose of structural model updating", Struct. Control Hlth., 18(3), 305-320.
- Dutta, R., Ganguli, R. and Mani, V. (2011), "Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains", Smart Mater. Struct., 20(10), 1-14.
- ETABS, Computer & Structures, Inc., Berkeley, CA, USA, http://www.csiberkeley.com.
- Fidanova, S., Marinov, P. and Alba, E. (2012), "Ant algorithm for optimal sensor deployment", Comput. Int., 399, 21-29.
- Lei, Y. and He, M.Y. (2013a), "Identification of the nonlinear properties of rubber-bearings in base-isolated buildings with limited seismic response data", Sci. China Tech. Sci., 56(5), 1224-1231. https://doi.org/10.1007/s11431-013-5196-3
- Lei, Y., Liu, C., Jiang, Y.Q. and Mao, Y.K. (2013b), "Substructure based structural damage detection with limited input and output measurements", Smart Struct. Syst., 12(6), 619-640. https://doi.org/10.12989/sss.2013.12.6.619
- Lei, Y., Wang, H.F. and Shen, W.A. (2012a), "Update the finite element model of Canton Tower based on direct matrix updating with incomplete modal data", Smart Struct. Syst., 10(4-5), 471-483. https://doi.org/10.12989/sss.2012.10.4_5.471
- Lei, Y., Wu, Y. and Li, T. (2012b), "Identification of nonlinear structural parameters under limited input and output measurements", Int. J. Nonlin. Mech., 47, 1141-1146. https://doi.org/10.1016/j.ijnonlinmec.2011.09.004
- Liu, W., Gao, W.C., Sun, Y. and Xu, M. (2008), "Optimal sensor placement for spatial lattice structure based on genetic algorithms", J. Sound Vib., 317(1), 175-189. https://doi.org/10.1016/j.jsv.2008.03.026
- Li, J., Hao, H. and Lo. J.V. (2015), "Structural damage identification with power spectral density transmissibility: numerical and experimental studies", Smart Struct. Syst., 15(1), 15-40. https://doi.org/10.12989/sss.2015.15.1.015
- Li, J., Law, S.S., and Hao, H. (2013), "Improved damage identification in bridge structures subject to moving loads: Numerical and experimental studies", Int. J. Mech. Sci., 74, 99-111. https://doi.org/10.1016/j.ijmecsci.2013.05.002
- Li, X., Shao, Z. and Qian, J. (2002), "An optimizing method base on autonomous animates: fish swarm algorithm", Syst. Eng. Theory Pract., 11, 32-38.
- MATLAB, The MathWorks, Inc. Natwick, MA (USA), http://www.mathworks.com.
- Maul, W.A., Kopasakis, G., Santi, L.M., Sowers, T.S. and Chicatelli, A. (2008), "Sensor selection and optimization for health assessment of aerospace systems", J. Aero. Comp. Inf. Com., 5(1), 16-34. https://doi.org/10.2514/1.34677
- Meo, M. and Zumpano, G. (2005), "On the optimal sensor placement techniques for a bridge structure", Eng. Struct., 27(10), 1488-1497. https://doi.org/10.1016/j.engstruct.2005.03.015
- Mini, S., Udgata, S.K. and Sabat, S.L. (2011), "Sensor deployment in 3-D terrain using artificial bee colony algorithm", Lect. Notes Comput. Sc., 6536, 313-324.
- Papadimitriou, C., Haralampidis, Y. and Sobczykb, K. (2005), "Optimal experimental design in stochastic structural dynamics", Prob. Eng. Mech., 20(1), 67-78. https://doi.org/10.1016/j.probengmech.2004.06.002
- Rao, A.R.M. and Anandakumar, G. (2007), "Optimal placement of sensors for structural system identification and health monitoring using a hybrid swarm intelligence technique", Smart Mater. Struct., 16(6), 2658-2672. https://doi.org/10.1088/0964-1726/16/6/071
- Shen, W., Guo, X.P., Wu, C. and Wu, D. (2011), "Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm", Knowl. Bas. Syst., 24(3), 378-385. https://doi.org/10.1016/j.knosys.2010.11.001
- Tsai, H.C. and Lin, Y.H. (2011), "Modification of the fish swarm algorithm with particle swarm optimization formulation and communication behavior", Appl. Soft Comput., 11(8), 5367-5374. https://doi.org/10.1016/j.asoc.2011.05.022
- Yao, L., Sethares, W.A. and Kammer, D.C. (1993), "Sensor placement for on orbit modal identification via a genetic algorithm", AIAA J., 31(10), 1167-1169. https://doi.org/10.2514/3.49057
- Yi, T.H. and Li, H.N. (2012a), "Methodology developments in sensor placement for health monitoring of civil infrastructures", Int. J. Distrib. Sens. N., 2012, 612726.
- Yi, T.H., Li, H.N. and Gu, M. (2011a), "A new method for optimal selection of sensor location on a high-rise building using simplified finite element model", Struct. Eng. Mech., 37(6), 671-684. https://doi.org/10.12989/sem.2011.37.6.671
- Yi, T.H., Li, H.N. and Gu, M. (2011b), "Optimal sensor placement for structural health monitoring based on multiple optimization strategies", Struct. Des. Tall Spec. Build., 20(7), 881-900. https://doi.org/10.1002/tal.712
- Yi, T.H., Li, H.N. and Gu, M. (2013), "Recent research and applications of GPS-based monitoring technology for high-rise structures", Struct. Control Hlth., 20(5), 649-670. https://doi.org/10.1002/stc.1501
- Yi, T.H., Li, H.N. and Zhang, X.D. (2012b), "A modified monkey algorithm for optimal sensor placement in structural health monitoring", Smart Mater Struct., 21(10), 105033. https://doi.org/10.1088/0964-1726/21/10/105033
- Yi, T.H., Li, H.N. and Zhang, X.D. (2012c), "Sensor placement on Canton Tower for health monitoring using asynchronous-climbing monkey algorithm", Smart Mater. Struct., 21(12), 125023. https://doi.org/10.1088/0964-1726/21/12/125023
- Zhao, R.Q. and Tang, W.S. (2008), "Monkey algorithm for global numerical optimization", J. Uncertain Syst., 2(3), 165-176.
피인용 문헌
- Multi-swarm fruit fly optimization algorithm for structural damage identification vol.56, pp.3, 2015, https://doi.org/10.12989/sem.2015.56.3.409
- Bioinspired Intelligent Algorithm and Its Applications for Mobile Robot Control: A Survey vol.2016, 2016, https://doi.org/10.1155/2016/3810903
- A flexible traffic stream model and its three representations of traffic flow vol.75, 2017, https://doi.org/10.1016/j.trc.2016.12.006
- A survey on sensor placement for contamination detection in water distribution systems 2016, https://doi.org/10.1007/s11276-016-1358-0
- Empirical validation of vehicle type-dependent car-following heterogeneity from micro- and macro-viewpoints pp.2168-0582, 2019, https://doi.org/10.1080/21680566.2018.1517057
- Sensor placement for structural health monitoring using hybrid optimization algorithm based on sensor distribution index and FE grids vol.25, pp.6, 2018, https://doi.org/10.1002/stc.2160
- Reliable monitoring of embankment dams with optimal selection of geotechnical instruments vol.4, pp.1, 2015, https://doi.org/10.12989/smm.2017.4.1.085
- A measuring system for determination of a cantilever beam support moment vol.19, pp.4, 2017, https://doi.org/10.12989/sss.2017.19.4.431
- Improved block-wise MET for estimating vibration fields from the sensor vol.64, pp.3, 2015, https://doi.org/10.12989/sem.2017.64.3.279
- BB-BC optimization algorithm for structural damage detection using measured acceleration responses vol.64, pp.3, 2017, https://doi.org/10.12989/sem.2017.64.3.353
- Optimal sensor placement for cable force monitoring using spatial correlation analysis and bond energy algorithm vol.20, pp.6, 2015, https://doi.org/10.12989/sss.2017.20.6.769
- A multitype sensor placement method for the modal estimation of structure vol.21, pp.4, 2015, https://doi.org/10.12989/sss.2018.21.4.407
- A state-of-the-art review of an optimal sensor placement for contaminant warning system in a water distribution network vol.15, pp.10, 2015, https://doi.org/10.1080/1573062x.2019.1597378
- Experimental and numerical studies on mechanical behavior of buried pipelines crossing faults vol.75, pp.1, 2015, https://doi.org/10.12989/sem.2020.75.1.071