DOI QR코드

DOI QR Code

Adaptive-scale damage detection strategy for plate structures based on wavelet finite element model

  • He, Wen-Yu (Department of Civil Engineering, Hefei University of Technology) ;
  • Zhu, Songye (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University)
  • 투고 : 2014.11.02
  • 심사 : 2015.02.17
  • 발행 : 2015.04.25

초록

An adaptive-scale damage detection strategy based on a wavelet finite element model (WFEM) for thin plate structures is established in this study. Equations of motion and corresponding lifting schemes for thin plate structures are derived with the tensor products of cubic Hermite multi-wavelets as the elemental interpolation functions. Sub-element damages are localized by using of the change ratio of modal strain energy. Subsequently, such damages are adaptively quantified by a damage quantification equation deduced from differential equations of plate structure motion. WFEM scales vary spatially and change dynamically according to actual needs. Numerical examples clearly demonstrate that the proposed strategy can progressively locate and quantify plate damages. The strategy can operate efficiently in terms of the degrees-of-freedom in WFEM and sensors in the vibration test.

키워드

참고문헌

  1. Amaratunga, K. and Sudarshan, R. (2006), "Multi-resolution modeling with operator-customized wavelets derived from finite elements", Comput. Meth. Appl. M., 195, 2509-2532. https://doi.org/10.1016/j.cma.2005.05.012
  2. Averbuch, A.Z., Zheludev, V.A. and Cohen, T. (2007), "Multiwavelet frames in signal space originated from Hermite splines", IEEE T Signal Pr., 55(3), 797-808 https://doi.org/10.1109/TSP.2006.887569
  3. Bayissa, W.L. and Haritos, N. (2007), "Damage identification in plate-like structures using bending moment response power spectral density", Struct. Hlth. Monit., 6, 5-24 https://doi.org/10.1177/1475921707072059
  4. Becker, R. and Braack, M. (2000), "Multigrid techniques for finite elements on locally refined meshes", Numer. Linear Algebr., 7, 363-379 https://doi.org/10.1002/1099-1506(200009)7:6<363::AID-NLA202>3.0.CO;2-V
  5. Biboulet, N., Gravouil, A., Dureisseix, D., Lubrecht, A.A. and Combescure, A. (2013), "An efficient linear elastic FEM solver using automatic local grid refinement and accuracy control", Finite Elem. Anal. Des., 68, 23-38
  6. Chen, W.H. and Wu, C.W. (1995), "Spline wavelets element method for frame structures vibration", Comput. Mech., 16, 1-21 https://doi.org/10.1007/BF00369880
  7. Chen, X.F., Xiang, J.W., Li, B. and He, Z.J. (2010), "A study of multiscale wavelet-based elements for adaptive finite element analysis", Adv. Eng. Softw., 41(2), 196-205 https://doi.org/10.1016/j.advengsoft.2009.09.008
  8. Clough, W. and Penzien, J. (1993), Dynamics of Structures, third Edition, McGraw-Hill, New York
  9. Cornwell, P., Doebling, S.W. and Farrar, C.R. (1999), "Application of the strain energy damage detection method to plate-like structures", J. Sound. Vib., 224(2), 359-374 https://doi.org/10.1006/jsvi.1999.2163
  10. Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. (1996), "Damage identification and health monitoring of structural mechanical systems from changes in their vibration characteristics: a literature review", Report No. LA-13070-MS, Los Alamos National Laboratory, Los Alamos, NM, USA
  11. Diaz, L.A., Martin, M.T. and Vampa, V. (2009), "Daubechies wavelet beam and plate finite elements", Finite Elem. Anal. Des., 45(3), 200-209 https://doi.org/10.1016/j.finel.2008.09.006
  12. Fan, W. and Qiao, P.Z. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct. Hlth. Monit., 10(1), 83-111 https://doi.org/10.1177/1475921710365419
  13. Fan, W. and Qiao, P.Z. (2012), "A strain energy-based damage severity correction factor method for damage identification in plate-type structures", Mech. Syst. Signal Pr., 28, 660-678 https://doi.org/10.1016/j.ymssp.2011.11.010
  14. Fu, Y.Z., Lu, Z.R. and Liu, J.K. (2013), "Damage identification in plates using finite element model updating in time domain", J. Sound Vib., 332, 7018-7032 https://doi.org/10.1016/j.jsv.2013.08.028
  15. Guan, H. and Karbhari, V.M. (2008), "Improved damage detection method based on element modal strain damage index using sparse measurement", J. Sound Vib., 309(3-5), 465-494 https://doi.org/10.1016/j.jsv.2007.07.060
  16. Han, J.G., Ren, W.X. and Huang, Y. (2006), "A spline wavelet finite-element method in structural mechanics", Int. J. Numer. Meth. Eng., 66, 166-190 https://doi.org/10.1002/nme.1551
  17. He, W.Y. and Ren, W.X. (2012), "Finite element analysis of beam structures based on trigonometric wavelet", Finite Elem. Anal. Des., 51, 59-66 https://doi.org/10.1016/j.finel.2011.11.005
  18. He, W.Y. and Ren, W.X. (2013), "Adaptive trigonometric hermite wavelet finite element method for structural analysis", Int. J. Struct. Stab. Dyn., 13(1), 1350007 https://doi.org/10.1142/S0219455413500077
  19. He, W.Y., Ren, W.X. and Yang, Z.J. (2012), "Computation of plane crack stress intensity factors using trigonometric wavelet finite element methods", Fatig. Fract. Eng. Mater. Struct., 35, 732-741 https://doi.org/10.1111/j.1460-2695.2011.01626.x
  20. He, W.Y. and Zhu, S. (2013), "Progressive damage detection based on multi-scale wavelet finite element model: numerical study", Comput. Struct., 125, 177-186 https://doi.org/10.1016/j.compstruc.2013.05.001
  21. He, W.Y., Zhu, S., and Ren, W.X., (2014), "A wavelet finite element-based adaptive- scale damage detection strategy", Smart Struct. Syst., 14(3), 285-305. https://doi.org/10.12989/sss.2014.14.3.285
  22. Homaei, F., Shojaee, S. and Amiri, G.G. (2014), "A direct damage detection method using Multiple Damage Localization Index Based on Mode Shapes criterion", Struct. Eng. Mech., 49(2), 183-202. https://doi.org/10.12989/sem.2014.49.2.183
  23. Hu, H. and Wu, C. (2009), "Development of scanning damage index for the damage detection of plate structures using modal strain energy method", Mech. Syst. Signal Proc., 23, 274-287 https://doi.org/10.1016/j.ymssp.2008.05.001
  24. Kazemi, S., Fooladi, A. and Rahai, A.R. (2010), "Implementation of the modal flexibility variation to fault identification in thin plates", Acta Astronaut., 66, 414-426 https://doi.org/10.1016/j.actaastro.2009.06.020
  25. Ko, J., Kurdila, A.J. and Pilant, M.S. (1995), "A class of finite element methods based on orthonormal, compactly supported wavelets", Comput. Mech., 16, 235-244 https://doi.org/10.1007/BF00369868
  26. Lee, U. and Shin, J. (2002), "A structural damage identification method for plate structures", Eng. Struct., 24, 1177-1188 https://doi.org/10.1016/S0141-0296(02)00051-2
  27. Li, B. and Chen, X.F. (2014), "Wavelet-based numerical analysis: A review and classification", Finite Elem. Anal. Des., 81, 14-31 https://doi.org/10.1016/j.finel.2013.11.001
  28. Quraishi, S.M. and Sandeep, K. (2013), "Multiscale modeling of beam and plates using customized second-generation wavelets", J. Eng. Math., 83, 185-202. https://doi.org/10.1007/s10665-012-9579-4
  29. Shi, Z.Y. and Law, S.S. (1998), "Structural damage localization from modal strain energy change", J. Sound Vib., 218(5), 825-844 https://doi.org/10.1006/jsvi.1998.1878
  30. Wang, Y.M. and Wu, Q. (2013), "Construction of operator-orthogonal wavelet-based elements for adaptive analysis of thin plate bending problems", CMES-Comp. Model. Eng., 93(1), 17-45
  31. Wang, Y.M., Wu, Q. and Wang, W. (2014), "The construction of second generation wavelet-based multivariable finite elements for multi-scale analysis of beam problems", Struct. Eng. Mech., 50(5), 679-695. https://doi.org/10.12989/sem.2014.50.5.679
  32. Wu, D., Law, S.S., (2004), "Damage localization in plate structures from uniform load surface curvature", J. Sound Vib., 276, 227-244 https://doi.org/10.1016/j.jsv.2003.07.040
  33. Xiang, J.W., Chen, X.F., He, Z.J. and Zhang, Y.H. (2008), "A new wavelet-based thin plate element using B-spline wavelet on the interval", Comput. Mech., 41(2), 243-255 https://doi.org/10.1007/s00466-007-0182-x
  34. Xiang, J.W., Nackenhorst, U., Wang, Y., Jiang, Y., Gao, H. and He, Y. (2014), "A new method to detect cracks in plate-like structures with though-thickness cracks", Smart Struct. Syst., 14(3), 397-418. https://doi.org/10.12989/sss.2014.14.3.397
  35. Yam, L.H., Li, Y.Y. and Wong, W.O. (2002), "Sensitivity studies of parameters for damage detection of plate-like structures using static and dynamic approaches", Eng. Struct., 24, 1465-1475 https://doi.org/10.1016/S0141-0296(02)00094-9
  36. Yan, W.J., Huang, T.L. and Ren, W.X. (2010), "Damage detection method based on element modal strain energy sensitivity", Adv. Struct. Eng., 13, 1075-1088 https://doi.org/10.1260/1369-4332.13.6.1075
  37. Zhu, S., He, W.Y. and Ren W.X. (2013), "Adaptive-scale damage detection for frame structures using beam-type wavelet finite element: experimental validation", J. Earthq. Tsunami, 7(3), 1350024 https://doi.org/10.1142/S1793431113500243
  38. Zienkiewicz, O.C. and Taylor, R.L. (1961), The Finite Element Method, fourth Edition, McGraw-Hill Book Company, London.

피인용 문헌

  1. Damage detection of plate-like structures using intelligent surrogate model vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1233
  2. Wavelet analysis based damage localization in steel frames with bolted connections vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1189
  3. Structural damage detection based on Chaotic Artificial Bee Colony algorithm vol.55, pp.6, 2015, https://doi.org/10.12989/sem.2015.55.6.1223
  4. Temperature field analysis of liquid stratification for LNG tank based on orthogonal ridgelet finite element method vol.125, pp.1, 2016, https://doi.org/10.1007/s10973-016-5432-8
  5. Structural damage detection through longitudinal wave propagation using spectral finite element method vol.12, pp.1, 2015, https://doi.org/10.12989/gae.2017.12.1.161
  6. Influence of soil-structure interaction on seismic responses of offshore wind turbine considering earthquake incident angle vol.13, pp.1, 2015, https://doi.org/10.12989/eas.2017.13.1.039
  7. On crack detection in curved beams using change of natural frequency vol.20, pp.2, 2018, https://doi.org/10.21595/jve.2017.18774
  8. A wavelet-based despiking algorithm for large data of structural health monitoring vol.14, pp.12, 2018, https://doi.org/10.1177/1550147718819095
  9. Bayesian Prediction of Pre-Stressed Concrete Bridge Deflection Using Finite Element Analysis vol.19, pp.22, 2015, https://doi.org/10.3390/s19224956