참고문헌
- Bezdek, J.C. (1981), Pattern recognition with fuzzy objective function algorithm, Plenum Press, NY.
- Box, G. and Jenkins, G. (1976), Time series analysis: forecasting and control, Prentice Hall, Englewood Cliffs, New Jersey.
- Carden, E.P. and Brownjohn, J.M. (2008), "ARMA modelled time-series classification for structural health monitoring of civil infrastructure", Mech. Syst. Sig. Proc., 22(2), 295-314. https://doi.org/10.1016/j.ymssp.2007.07.003
- Carden, E.P. and Fanning, F. (2004), "Vibration based condition monitoring: a review", Struct. Hlth. Monit., 3(4), 355-377. https://doi.org/10.1177/1475921704047500
- Chen, L.J. and Yu, L. (2013), "Structural nonlinear damage identification algorithm based on time series ARMA/GARCH model", Adv. Struct. Eng., 16(9), 1597-1609. https://doi.org/10.1260/1369-4332.16.9.1597
- da Silva, S., Dias Junior, M., Lopes Junior, V. and Brennan, M.J. (2008), "Structural damage detection by fuzzy clustering", Mech. Syst. Sig. Proc., 22, 1636-1649. https://doi.org/10.1016/j.ymssp.2008.01.004
- Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of the vibration-based damage identification methods", Shock Vib. Dig., 30(2), 91-105. https://doi.org/10.1177/058310249803000201
- Dorvash, S., Pakzad, S.N. and LaCrosse, E.L. (2014), "Statistics based localized damage detection using vibration response", Smart Struct. Syst., 14(2), 85-104. https://doi.org/10.12989/sss.2014.14.2.085
- Farrar, C.R. and Worden, K. (2007), "An introduction to structural health monitoring", Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 365(1851), 303-315. https://doi.org/10.1098/rsta.2006.1928
- Figueiredo, E., Park, G., Figueiras, J. Farrar, C. R. and Worden, K. (2009), "Structural health monitoring algorithm comparisons using standard data sets", Los Alamos National Laboratory Report, LA-14393.
- Fugate, M.L., Sohn, H. and Farrar, C. R. (2001), "Vibration-based damage detection using statistical process control", Mech. Syst. Sig. Proc., 15(4), 707-721. https://doi.org/10.1006/mssp.2000.1323
- Gul, M. and Catbas, F.N. (2009), "Statistical pattern recognition for structural health monitoring using time series modeling: theory and experimental verifications", Mech. Syst. Sig. Proc., 23(7), 2192-2204. https://doi.org/10.1016/j.ymssp.2009.02.013
- Gul, M. and Catbas, F.N. (2011), "Structural health monitoring and damage assessment using a novel time series analysis methodology with sensor clustering", J. Sound and Vib., 330(6), 1196-1210. https://doi.org/10.1016/j.jsv.2010.09.024
- Lee, S.G. and Yun, G.J. (2013), "A statistical reference-free damage identification for real-time monitoring of truss bridges using wavelet-based log likelihood ratios", Smart Struct. Syst., 12(2), 181-207. https://doi.org/10.12989/sss.2013.12.2.181
- Lei, Y., Chen, F. and Zhou, H. (2015), "A two-stage and two-step algorithm for the identification of structural damage and unknown excitations: numerical and experimental studies", Smart Struct. Syst., 15(1), 57-80. https://doi.org/10.12989/sss.2015.15.1.057
- Li, Y.Y. and Chen, Y. (2013), "A review on recent development of vibration-based structural robust damage detection", Struct. Eng. Mech., 45(2), 159-168. https://doi.org/10.12989/sem.2013.45.2.159
- Lu, Y. and Gao, F. (2005), "A novel time-domain auto-regressive model for structural damage diagnosis", J. Sound Vib., 283(3-5), 1031-1049. https://doi.org/10.1016/j.jsv.2004.06.030
- MATLAB (2010), Statistics Toolbox, User's Guide, http://www.mathworks.com, The MathWorks, Inc.
- Mattson, S. and Pandit, S. (2006), "Statistical moments of autoregressive model residuals for damage localisation", Mech. Syst. Sig. Proc., 20, 627-645. https://doi.org/10.1016/j.ymssp.2004.08.005
- Nair, K.K., Kiremidjian, A.S. and Law, K.H. (2006), "Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure", J. Sound Vib., 291(1-2), 349-368. https://doi.org/10.1016/j.jsv.2005.06.016
- Omenzetter, P. and Brownjohn, J.M. (2006), "Application of time series analysis for bridge monitoring", Smart Mater. Struct., 15, 129-138. https://doi.org/10.1088/0964-1726/15/1/041
- Sohn, H. and Farrar, C.R. (2001), "Damage diagnosis using time series analysis of vibration signals", Smart Mater. Struct., 10, 1-6. https://doi.org/10.1088/0964-1726/10/1/301
- Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W. and Nadler, B.R. (2004), "A review of structural health monitoring literature: 1996-2001", Los Alamos National Laboratory Report.
- Yan, Y.J., Cheng, L., Wu, Z.Y. and Yam, L.H. (2007), "Development in vibration-based structural damage detection technique", Mech. Syst. Sig. Proc., 21, 2198-2211. https://doi.org/10.1016/j.ymssp.2006.10.002
- Yao, R. and Pakzad, S.N. (2014), "Damage and noise sensitivity evaluation of autoregressive features extracted from structure vibration", Smart Mater. Struct., 23, 025007. https://doi.org/10.1088/0964-1726/23/2/025007
- Yao, R. and Pakzad, S.N. (2012). "Autoregressive statistical pattern recognition algorithms for damage detection in civil structures", Mech. Syst. Sig. Proc., 31, 355-368. https://doi.org/10.1016/j.ymssp.2012.02.014
- Yu, L., Zhu, J.H. and Yu, L.L. (2013), "Structural damage detection in a truss bridge model using fuzzy clustering and measured FRF data reduced by principal component projection", Adv. Struct. Eng., 16(1), 207-217. https://doi.org/10.1260/1369-4332.16.1.207
- Zhang, Q.W. (2007), "Statistical damage identification for bridges using ambient vibration data", Comput. Struct., 85, 476-485. https://doi.org/10.1016/j.compstruc.2006.08.071
- Zhou, L.R., Yan, G.R., Wang, L. and Ou, J.P. (2013), "Review of benchmark studies and guidelines for structural health monitoring", Adv. Struct. Eng., 16(7), 1187-1206. https://doi.org/10.1260/1369-4332.16.7.1187
- Zhu, J.H., Yu, L. and Yu, L.L. (2012), "An eigenspace projection clustering method for structural damage detection", Struct. Eng. Mech., 44(2), 179-196. https://doi.org/10.12989/sem.2012.44.2.179
- Zugasti, E., Gomez Gonzalez, A., Anduaga, J., Arregui, M.A. and Martinez, F. (2012), "NullSpace and AutoRegressive damage detection: a comparative study", Smart Mater. Struct., 21, 085010. https://doi.org/10.1088/0964-1726/21/8/085010
피인용 문헌
- Singular spectrum analysis combined with ARMAX model for structural damage detection vol.24, pp.9, 2017, https://doi.org/10.1002/stc.1960
- Structural Nonlinear Damage Detection Method Using AR/ARCH Model vol.17, pp.08, 2017, https://doi.org/10.1142/S0219455417500833
- New damage-sensitive feature for structures with bolted joints vol.842, 2017, https://doi.org/10.1088/1742-6596/842/1/012083
- Structural Damage Prognosis on Truss Bridges with End Connector Bolts vol.143, pp.3, 2017, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001052
- A hybrid self-adaptive Firefly-Nelder-Mead algorithm for structural damage detection vol.17, pp.6, 2016, https://doi.org/10.12989/sss.2016.17.6.957
- Statistical moments in modelling of swelling, erosion and drug release of hydrophilic matrix-tablets 2018, https://doi.org/10.1016/j.ijpharm.2018.01.052
- Cloud Computing-Based Time Series Analysis for Structural Damage Detection vol.143, pp.1, 2017, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000982
- Vibration-based damage detection techniques used for health monitoring of structures: a review vol.6, pp.3, 2016, https://doi.org/10.1007/s13349-016-0168-5
- Two-Stage Covariance-Based Multisensing Damage Detection Method vol.143, pp.3, 2017, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001053
- EMD-Shannon Entropy-Based Methodology to Detect Incipient Damages in a Truss Structure vol.8, pp.11, 2018, https://doi.org/10.3390/app8112068
- Damage diagnosis in intelligent tires using time-domain and frequency-domain analysis pp.1539-7742, 2018, https://doi.org/10.1080/15397734.2018.1496842
- Output-only damage localization technique using time series model vol.43, pp.9, 2018, https://doi.org/10.1007/s12046-018-0912-0
- Experimental investigation on multi-objective multi-type sensor optimal placement for structural damage detection pp.1741-3168, 2018, https://doi.org/10.1177/1475921718785182
- Stochastic modelling fatigue crack evolution and optimum maintenance strategy for composite blades of wind turbines vol.63, pp.6, 2015, https://doi.org/10.12989/sem.2017.63.6.703
- Probabilistic damage detection of structures with uncertainties under unknown excitations based on Parametric Kalman filter with unknown Input vol.63, pp.6, 2015, https://doi.org/10.12989/sem.2017.63.6.779
- A novel PSO-based algorithm for structural damage detection using Bayesian multi-sample objective function vol.63, pp.6, 2017, https://doi.org/10.12989/sem.2017.63.6.825
- Sparse regularization-based damage detection in a bridge subjected to unknown moving forces vol.9, pp.3, 2015, https://doi.org/10.1007/s13349-019-00343-w
- Multi-constrained optimization combining ARMAX with differential search for damage assessment vol.72, pp.6, 2015, https://doi.org/10.12989/sem.2019.72.6.689
- A hybrid ant lion optimizer with improved Nelder-Mead algorithm for structural damage detection by improving weighted trace lasso regularization vol.23, pp.3, 2015, https://doi.org/10.1177/1369433219872434
- Structural nonlinear damage identification using penalty conversion index of GARCH model vol.12, pp.11, 2020, https://doi.org/10.1177/1687814020971173
- A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications vol.147, pp.None, 2021, https://doi.org/10.1016/j.ymssp.2020.107077
- Structural Damage Diagnosis Based on the Temporal Moment of Partially Measured Structural Responses vol.34, pp.1, 2015, https://doi.org/10.1061/(asce)as.1943-5525.0001227
- A hybrid learning strategy for structural damage detection vol.20, pp.4, 2015, https://doi.org/10.1177/1475921720966943
- Towards an Integrated Approach to Infrastructure Damage Assessment in the Aftermath of Natural Hazards vol.11, pp.10, 2015, https://doi.org/10.3390/buildings11100450