DOI QR코드

DOI QR Code

양송이 배지에서 유래한 Lipase 생산균을 이용한 바이오디젤 생산

Biodiesel production using lipase producing bacteria isolated from button mushroom bed

  • 김현희 (충남대학교 농업생명과학대학 생물환경화학과) ;
  • 김찬겸 (충남대학교 농업생명과학대학 생물환경화학과) ;
  • 한창훈 (충남대학교 농업생명과학대학 생물환경화학과) ;
  • 이찬중 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 공원식 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 윤민호 (충남대학교 농업생명과학대학 생물환경화학과)
  • Kim, Heon-Hee (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Chan-Kyum (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Han, Chang-Hoon (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Lee, Chan-Jung (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kong, Won-Sik (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
  • 투고 : 2015.03.03
  • 심사 : 2015.03.30
  • 발행 : 2015.03.31

초록

양송이 수확후 배지로부터 lipase 생산균을 분리하여 16S rDNA 유전자 분석을 통해 동정한 결과, Burkholderia cepacia ATCC와 99.8% 상동성을 나타냈다. 분리균 B. cepacia 배양여액 중에 함유된 효소단백질을 70% 황산암모늄으로 침전시켜 crude lipase를 회수하였다. 고정화 효소를 제조하기 위하여 crude lipase(CL)과 Novozyme lipase(NL)을 cross-linking 법에 의해 Silane화된 Silicagel에 고정화 시킨 결과, immobilized CL(ICL)은 61%, immobilized NL(INL)은 72%의 잔존활성을 유지하였다. 중성지방 Canola oil을 알칼리(NaOH) 촉매와 효소(CL 및 ICL) 촉매를 이용하여 지방산(fatty acid)으로 분해한 후, methanolysis에 의한 에스터전이반응(trans-esterification)을 통해 지방산으로부터 전환된 바이오디젤(fatty acid methyl ester, FAME)의 종류와 수율을 비교 하였다. 생성된 총 FAME 함량은 NaOH $781mg\;L^{-1}$, free lipase $681mg\;L^{-1}$, 고정화 lipase $598mg\;L^{-1}$순으로 높았으며, 지방산 조성별 FAME 함량은 linoleic acid(C18:1)가 약 50%로 가장 높았으며, stearic acid(C18:0)가 22%정도의 높은 수준이었다. 또한 반응시간이 증가함에 따라 CL과 ICL 모두 불포화지방산 FAME의 조성비는 감소하고, 상대적으로 포화지방산 FAME의 조성비는 증가하는 경향을 보여 lipase 효소가 transesterification 활성과 interesterification 활성을 동시에 가지는 것으로 여겨진다. 고정화효소의 잔여활성은 반복회수가 증가함에 따라 서서히 감소하여 4회 반복 후, 초기 활성도에 비해 ICL은 34% 와 INL은 21%까지 감소하였다.

A lipase producing bacterium was isolated from button mushroom bed, which showing high clear zone on agar media containing Tributyrin as the substrate. The strain was identified as Burkholderia cepacia by analysis of 16S rDNA gene sequence. Crude lipase (CL) was partially purified from 70% ammonium sulfate precipitation using the culture filtrate of B. cepacia. Immobilized lipases were prepared by cross-linking method with CL from B. cepacia and Novozyme lipase (NL) onto silanized Silica-gel as support. Residual activitiy of the immobilized CL (ICL) and immobilized NL (INL) was maintained upto 61% and 72%, respectively. Biodiesel (Fatty acid methyl ester, FAME) was recovered by transesterification and methanolysis of Canola oil using NaOH, CL and ICL as the catalysts to compare the composition of fatty acids and the yield of FAME. Total FAME content was NaOH $781mg\;L^{-1}$, CL $681mg\;L^{-1}$ and ICL $596mg\;L^{-1}$, in which the highest levels of FAME was observed to 50% oleic acid (C18:1) and 22% stearic acid (C18:0). In addition, the unsaturated FAME (C18:1, C18:2) decreased, while saturated FAME (C16:0, C18:0) increased according to increasing the reaction times with both CL and ICL, supporting CL possess both transesterification and interesterification activity. When reusability of ICL and INL was estimated by using the continuous reaction of 4 cycles, the activity of ICL and INL was respectively maintained 66% and 79% until the fourth reaction.

키워드

참고문헌

  1. Akoh CC, Chang SW, Lee GC, Shaw JF. 2007. Enzymatic approach to biodiesel production. J Argic Food Chem. 55: 8995-9005. https://doi.org/10.1021/jf071724y
  2. Bajaj A, Lohan P, Jha PN, Mehrotra R. 2010. Biodiesel production through lipase catalyzed transesterification: an overview. J Mol Catal B Enzym. 62: 9-14. https://doi.org/10.1016/j.molcatb.2009.09.018
  3. Charpe TW, Rathod VK. 2010. Biodiesel production using waste frying oil. Waste Manag. 31: 8590.
  4. Dizge N, Keskinler AB, Tanriseven A. 2009. Biodiesel production from canola oil by using lipase immobilized onto hydrophobic microporous styrenedivinylbenzene copolymer. Biochem Eng J. 44: 220-225. https://doi.org/10.1016/j.bej.2008.12.008
  5. Jaeger KE, Eggert T. 2002. Lipases for biotechnology. Curr Opin Biotechnol. 13: 390-397. https://doi.org/10.1016/S0958-1669(02)00341-5
  6. Kharrat N, Ali YB, Marzouk S, Gargouri TY, Karra Chaabouni M. 2011. Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: Comparison with the free enzyme. Process Biochem. 46: 1083-1089. https://doi.org/10.1016/j.procbio.2011.01.029
  7. Kim SW, Lee DH, Yeo JM, Lee JH, Choi MS, Jeon SW. 2005. Biodiesel production from waste oil using Immobilization of lipase. [in Korean]
  8. Knothe G, Steidley KR. 2005. Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel. 84(9): 1059-1065. https://doi.org/10.1016/j.fuel.2005.01.016
  9. Lee KT, Foglia TA, Lee JH. 2005. Low-calorie fat substitutes: synthesis and analysis. Vol. 16, pp. 1-19. In: Handbook of Industrial Biocatalysis. Hou CT (ed). CRC Press, Boca Raton, FL, USA.
  10. Li NW, Zong MH, Wu H. 2009. Highly efficient transformation of waste oil to biodiesel by immobilized llipase from Penicillium expansum. Process Biochem. 44: 685-688. https://doi.org/10.1016/j.procbio.2009.02.012
  11. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem. 193: 265-275.
  12. Meher LC, Vidya Sagar D, Naik SN. 2006. Technical aspects of biodiesel production by transesterificationa review. Renewable and sustainable energy reviews. 10(3): 248-268. https://doi.org/10.1016/j.rser.2004.09.002
  13. Mustranta A, Forssell P, Poutanen K. 1993. Applications of immobilized lipases to transesterification and esterification reactions in non-aqueous system. Enzyme Microb Tech. 15: 133-139. https://doi.org/10.1016/0141-0229(93)90037-3
  14. Parawira W. 2009. Biotechnological production of biodiesel fuel using biocatalyzed transesterification: A review. Crit Rev Biotechnol. 29: 82-93. https://doi.org/10.1080/07388550902823674
  15. Park CH, Yeo JM, Lee DH, Kim SW. 2004. Lipase immobilization using cross linking method for esterification of oil to biodiesel. Theories and Applications of Chem. Eng. 10(2): 1542-1545.
  16. Park SR and Lee KT. 2014. Immobilization of lipases on Amberlite and their interesterification reaction characteristics. Korean J Food Sci Technol.. 46: 315-22. https://doi.org/10.9721/KJFST.2014.46.3.315
  17. Shimada Y, Watanabe Y, Sugihara A, Tominaga Y. 2002. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B Enzym. 17: 133-142. https://doi.org/10.1016/S1381-1177(02)00020-6
  18. Singh R, Gupta N, Goswami VK, Gupta R. 2006. A simple activity staining protocol for lipases and esterases. Appl Microbiol Biotechnol. 70: 679-682. https://doi.org/10.1007/s00253-005-0138-z
  19. Tripathia, R., J. Singha, R. K. Bhartia, I. S. Thakur. 2014. Isolation, purification and characterization of lipase from Microbacterium sp. and its application in biodiesel production. Energy Procedia. 54 : 518-529. https://doi.org/10.1016/j.egypro.2014.07.293
  20. Winkler UK, Stuckmann MJ. 1979. Glycogen, hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by Serratua marcescens. Bacteriol. 138(3): 663-670.
  21. Ye P, Jiang J, Xu ZK. 2007. Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly (acrylonitrilecomaleic acid) membrane surface. Colloid Surface B. 60: 62-67. https://doi.org/10.1016/j.colsurfb.2007.05.022
  22. Yoo HY, Simkhada JR, Cho SS, Park DH, Kim SW, Seong CN, Yoo JC. 2011. A novel alkaine lipase from Ralstonia with potential application in biodiesel production. Bioresour Technol. 102: 6104-6111. https://doi.org/10.1016/j.biortech.2011.02.046
  23. Yoon SA, Han JY, Kim HK. 2011. Production of biodiesel using immobilized lipase from Proteus vulgaris. Korean J Microbiol Biotechnol. 39(3): 238-244.
  24. Yu HW, Chen H, Wang X, Yang YY, Ching CB. 2006. Crosslinked enzyme aggregates (CLEAs) with controlled particles: Application to Candida rugosa lipase. J Mol Catal B Enzym. 43: 124-127. https://doi.org/10.1016/j.molcatb.2006.07.001