DOI QR코드

DOI QR Code

Effect of spent mushroom substrates on Phythopthora Blight disease and growth promotion of pepper

버섯 수확후배지의 고추 생육촉진 및 역병 억제 효과

  • Kwak, A-Min (Graduate School of Future Convergence Technology, Hankyong National University) ;
  • Kang, Dae Sun (Graduate School of Future Convergence Technology, Hankyong National University) ;
  • Lee, Sang-Yeop (Agricultural Microbiology Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Kang, Hee-Wan (Graduate School of Future Convergence Technology, Hankyong National University)
  • 곽아민 (한경대학교 미래융합기술대학원) ;
  • 강대선 (한경대학교 미래융합기술대학원) ;
  • 이상엽 (국립농업과학원 농업미생물과) ;
  • 강희완 (한경대학교 미래융합기술대학원)
  • Received : 2015.03.18
  • Accepted : 2015.03.31
  • Published : 2015.03.31

Abstract

Water extracts from spent mushroom substrate (SMSE)of edible mushrooms, Pleurotus eryngii, Hericium erinaceus and Lentinula edodes promoted growth of pepper seedling. Mycellial growth rate of Phythopthora capsici and Fusarium oxysporum was dramatically inhibited by 100% and 70% on PDA added with SMSE of H. erinaceus. SMSEs from H. erinaceus, P. eryngii, and L. edodes effectively reduced the disease severity of Phytophthora blight of pepper caused by Phytophthora capsici to 75%, 10% and 35%, respectively. These results suggested that SMSE from the mushrooms have dual effects that suppress phythopthora blight disease and promote plant growth of pepper.

큰느타리 (Pleurotus eryngii), 표고 (Lentinula edodes ), 노루궁뎅이 (Hericium erinaceus ) 버섯 수확 후 배지 (spent mushroom substrate, SMS) 물 추출액(SMSE)의 고추생장촉진과 고추역병균 억제효과를 조사하였다. 큰느타리버섯, 표고버섯 및 노루궁뎅이버섯 SMSE는 유묘생장시에 잎폭, 잎장, 초장, 절간, 절수 등에서 대조구에 비하여 모두 11~41%로 평균 20% 이상의 높은 생육효과가 있었으며 잎수에서는 거의 1.5배 높게 나타났다. 노루궁뎅이 SMSE혼합 PDA배지는 고추역병균사 성장을 거의 99-100% 억제하였다. 큰느타리, 표고버섯 및 노루궁뎅이 SMSE는 고추역병에 대하여 각각 25%, 65% 75%이상의 방제효과를 보였다.

Keywords

References

  1. Alves MJ, Ferreira ICFR, Joana Dias J, Teixeira V, Martins A, Pintado M1A. 2012. Review on Antimicrobial Activity of Mushroom (Basidiomycetes) Extracts and Isolated Compounds. Planta Med. 78:1707-1718. https://doi.org/10.1055/s-0032-1315370
  2. Chen JT, Huang JW. 2010. Antimicrobial activity of edible mushroom culture filtrates on plant pathogens. Plant Pathol Bulletin. 19:261-270.
  3. Di Piero RM, Wulff NA. 2006. Pascholati SF. Partial purification of elicitor from Lentinual edodes basidiocarps protecting cucumber deedlings against Collectotrichum lagenarium. Brazillian J Microbiol. 37:175-180.
  4. Hautzel R Anke T. 1990. Screening of basidiomycetes and ascomycetes for plant growth regulating substances. Introduction of the gibberellic acid induced de-novo synthesis of hydrolytic enzymes in embryoless seeds of Triticum aestivum as test system. Z Naturforsch. 45:1093-98.
  5. Jonathan SG, Lawal MM, Olusola Jacob Oyetunji OJ. 2011. Effect of Spent Mushroom Compost of Pleurotus pulmonarius on growth performance of four Nigerian vegetables. Mycobiology. 39:164-169. https://doi.org/10.5941/MYCO.2011.39.3.164
  6. Kang HJ, Jeong KH, Ahn KS, Han CU, Kim SH, Kim YG. 2011. Damage Analysis and Establishment of control threshold for Phytophthora blight of hot pepper (Capsicum annuum). Res Plant Dis. 17:1-12. https://doi.org/10.5423/RPD.2011.17.1.001
  7. Lee YG, Kang HW. 2013. Physiological, Biochemical and Genetic Characteristics of Ralstonia solanacearum strains Isolated from Pepper Plants in Korea. Res Plant Dis. 19:1-8. https://doi.org/10.5423/RPD.2013.19.1.001
  8. Lim SH, Lee YH, Kang HW. 2013. Optimal extraction and characteristics of lignocellulytic enzymes from various spent mushroom composts. Mycobiology. 41:160-166.
  9. Ministry of agriculture, food and rural affairs [cited 2013 sep] Available from: http://library.mafra.go.kr/skyblueimage/17767.pdf
  10. Minami T, Tanaka T, Takasaki S, Kawamura K. 2011. In vivo bioluminescence monitoring of defense gene expression in response to treatment with yeast cell wall extract. Plant Biotech. 28:481-484. https://doi.org/10.5511/plantbiotechnology.11.1020a
  11. Parada RY, Murakami S, Shimomura N, Egusa M, Otani H. 2011. Autoclaved spent substrate of hatakeshimeji mushroom (Lyophyllum decastes Sing.) and its water extract protect cucumber from anthracnose. Crop Protection. 30:443-50. https://doi.org/10.1016/j.cropro.2010.11.021
  12. Parada RY, Murakami S, Shimomura N, Otani, H. 2012. Suppression of fungal and bacterial diseases of cucumber plants by using the spent mushroom substrate of Lyophyllum decastes and Pleurotus eryngii. J Phytopathol. 160:390-96. https://doi.org/10.1111/j.1439-0434.2012.01916.x
  13. Shibuya N, Minami E. 2001. Oligosaccharide signaling for defense responses in plant. Physiol. Mol Plant Pathol. 59:223-233. https://doi.org/10.1006/pmpp.2001.0364
  14. Suay I, Arenal F, Asensio FJ, Basilio A, Cabello MA, Diez MT, Garcia JB, Va AG, Gorrochategui J, Hernandez P, Pelaez F, Vicente MF. 2000. Screening of basidiomycetes for antimicrobial activities. Antonie Leeuwenhoek. 78:129-139. https://doi.org/10.1023/A:1026552024021
  15. Suess A. 2006. Report: Value-Added Strategies for Spent Mushroom Substrate in BC. British Columbia Ministry of Agriculture and Lands. pp. 1-101.
  16. Yohalem DS, Nordheim EV, Andrews JH. 1996. The effect of water extracts of spent mushroom compost on apple scab in the field. Phytopathology. 86:914-922. https://doi.org/10.1094/Phyto-86-914

Cited by

  1. Control of Tomato Bacterial Wilt by the Prototypes Extracted from Spent Media Substrate of Hericium erinaceus vol.44, pp.4, 2016, https://doi.org/10.4489/KJM.2016.44.4.318
  2. Effect of Spent Mushroom Substrates of Hericium erinaceum on Plant Pathogens of Tomato vol.43, pp.3, 2015, https://doi.org/10.4489/KJM.2015.43.3.185
  3. Suppressive Effect of Water Extract from Spent Mushroom Substrate of Pleurotus eryngii against Tomato Bacterial Wilt Disease vol.44, pp.4, 2016, https://doi.org/10.4489/KJM.2016.44.4.323