DOI QR코드

DOI QR Code

코아 가교 양친성 고분자 나노입자 템플레이트를 이용한 무기물 나노 구조체 합성

Use of Core-Crosslinked Amphiphilic Polymer Nanoparticles as Templates for Synthesis of Nanostructured Inorganic Materials

  • 김현지 (강원대학교 신소재공학과) ;
  • 김나혜 (강원대학교 신소재공학과) ;
  • 김주영 (강원대학교 신소재공학과)
  • Kim, Hyun-Ji (Department of Advanced Materials Engineering, Kangwon National University) ;
  • Kim, Na-Hae (Department of Advanced Materials Engineering, Kangwon National University) ;
  • Kim, Juyoung (Department of Advanced Materials Engineering, Kangwon National University)
  • 투고 : 2014.11.18
  • 심사 : 2015.02.17
  • 발행 : 2015.03.30

초록

본 연구에서는 양친성 반응성 고분자 전구체를 합성하고 이를 사용하여 화학적, 물리적으로 안정한 코아 가교 양친성 고분자(Core-crosslinked Amphiphilic Polymer; 이하 CCAP) 나노입자를 제조하였으며, CCAP 나노입자를 $TiO_2$ 나노입자 제조의 템플레이트로 응용하였다. 먼저 CCAP 나노입자 수용액과 티타늄 이소프로폭사이드(Titanium isopropoxide)를 혼합하여, 매우 안정한 유/무기 나노하이브리드 솔(Sol)을 제조하였으며, 제조된 솔(Sol)은 회전코팅(Spin coating) 기법을 통해 유/무기 하이브리드 박막으로 제조하고, 소결 공정을 통해서 템플레이트인 CCAP를 제거하여 제조된 $TiO_2$ 나노입자의 미세구조를 주사전자현미경(SEM)을 이용하여서 관찰하였다. 다양한 CCAP 나노입자를 템플레이트로 사용하여 제조된 $TiO_2$ 나노입자의 미세구조를 기존 유기물 템플레이트(계면활성제)를 사용하여 제조된 $TiO_2$ 나노입자의 미세구조와 비교하여, CCAP 나노입자가 $TiO_2$ 나노입자 구조에 미치는 영향을 조사하였다.

In this study, physically and chemically stable core-crosslinked amphiphilic polymer (CCAP) nanoparticles were prepared using amphiphilic reactive precursors via soap-free emulsion process. Obtained CCAP nanoparticles were used as templates for synthesis of nanostructured $TiO_2$ nanoparticles. First, CCAP nanoparticles dispersed aqueous solutions were mixed with titanium isopropoxide to prepare stable organic-inorganic hybrid sols, and then obtained sols were spin coated onto glass substrate to prepare hybrid thin films onto glass, and then hybrid thin films were calcinated at various temperature to remove CCAP. Nanostructure of calcinated thin fims were examined by SEM. To study effect of CCAP nanoparticles on nanostructure of $TiO_2$ nanoparticles, the morphology of $TiO_2$ nanoparticles prepared using various CCAP templates was compared with that of $TiO_2$ nanoparticles prepared using conventional organic template, nonionic surfactant, Triton X-100.

키워드

참고문헌

  1. 김명수, 제1회 정밀화학 심포지엄 : 계면활성제, 한국공업화학회, 1, 79 (1991).
  2. D. Neupane, Gemini Suractant-Treated Oxide Particles for Removal of Nonionic Organic Compounds from Aqueous Phase, 한국물환경학회(구 한국수질보전학회), 2, 1281 (1997).
  3. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Ordered Mesoporous Molecular Sieves Synthesized by A Liquid-crystal Template Mechanism, Nature, 359, 710 (1992). https://doi.org/10.1038/359710a0
  4. Soft templating Strategies for The Synthesis of Mesoporous Materials : Inorganic, Organic-Inorganic Hybrid and Purely Organic Solids, Advances in Collid and Interface Science, 189, 21 (2013).
  5. C. Nardin, J. Widmer, M. Winterhalter, and W. Meier, Amphiphilic Block Copolymer Nanocontainers as Bioreactors, The European Physical Journal E, 4, 403 (2001). https://doi.org/10.1007/s101890170095
  6. G. Kaune, M. Memesa, R. Meier, M. A. Ruderer, A. Diethert, S. V. Roth, M. D'Acunzi, J. S. Gutmann, and P. Muller-B., Hierarchically Structured Titania Films Prepared by Polymer/Colloidal Templating, Applied Materials and Interface, 1, 12, 2862 (2009). https://doi.org/10.1021/am900592u
  7. X. Xiong, Z. Binkhathlan, O. Molavi, and A. Lavasanifar, Amphiphilic Block Copolymers : Preparation and Application in Nanodrug and Gene Delivery, Acta Biomaterialia, 8, 2017 (2012). https://doi.org/10.1016/j.actbio.2012.03.006
  8. M. Nedelcu, J. W. Lee, E. J. W. Crossland, S. C. Warren, M. C. Orilall, S. Guldin, S. Huttner, C. Ducati, D. Eder, u. Wiesner, u. Steiner, and H. J. Snaith, Block Copolymer Directed Synthesis of Mesoporous TiO2 for Dye-sensitized Solar Cells, Soft Matter, 5, 134 (2009). https://doi.org/10.1039/B815166K
  9. C. Cheng, K. Qi, D. S. Germack, E. Khoshdel, and K. L. Wooley, Synthesis of Core-Crosslinked Nanoparticles with Controlled Cylindrical Shape and Narrowly-Dispersed Size via Core-Shell Brush Block Copolymer Templates, Advanced Materials, 19, 2830 (2007). https://doi.org/10.1002/adma.200602986
  10. V. J. Mohanraj and Y. Chen, Nanoparticles-A Review, Tropical Journal of Pharmaceutical Research, 5(1), 561 (2006).
  11. E. S. Nachtman and S. Kalpakjian, Lubricants and Lubrication in Metal Working Operations, Marcel Dekker Inc. (1985).
  12. J. Y. Kim, D. H. Shin, K. J. Ihn, and C. W. Nam, Macromol. Chem. Phys., 203, 2454 (2002). https://doi.org/10.1002/macp.200290026
  13. J. Y. Kim, D. H. Shin, and K. J. Ihn, Macromol. Chem. Phy., 206, 794 (2005). https://doi.org/10.1002/macp.200400467
  14. J. Y. Kim, H. M. Kim, D. H. Shin, and K. J. Ihn, Macromol. Chem. Phys., 207, 925 (2006). https://doi.org/10.1002/macp.200600031
  15. T. Pradubsang, T. Amornsakchai, and u. Asawapirom, Effect of Ethyl Cellulose and Polyethylene Glycol on Structure of Photoelectrode and Photovoltaic Performance of Dye-Sensitized Solar Cells, Journal of the Microscopy Society of Thailand, 4, 130 (2011).
  16. A. K. Tripathi, M. K. Singh, M. C. Mathpal, S. K. Mishra, and A. Agarwal, Study of Structural Rransformation in TiO2 Nanoparticles and Its Optical Properties, Journal of Alloys and Compounds, 549, 114 (2013). https://doi.org/10.1016/j.jallcom.2012.09.012
  17. I. Hung, Y. Wang, C. Huang, Y. Fan, Y. Han, and H. Peng, Effects of templating surfactant concentrations on the mesostructure of ordered mesoporous anatase TiO2 by an evaporation-induced self-assembly method, Journal of the European Ceramic Society, 30, 2065 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.04.015