DOI QR코드

DOI QR Code

Fabrication of Cu2SnS3 (CTS) thin Film Solar Cells by Sulfurization of Sputtered Metallic Precursors

스퍼터법을 이용한 메탈 전구체기반의 Cu2SnS3 (CTS) 박막 태양전지 제조 및 특성 평가

  • Lee, Ju Yeon (Optoelectronics Convergence Research Centre, Department of Materials Science and engineering, Chonnam National University) ;
  • Kim, In Young (School of Information and communications, Gwangju Institute of Science and Technology) ;
  • Minhao, Wu (Optoelectronics Convergence Research Centre, Department of Materials Science and engineering, Chonnam National University) ;
  • Moon, Jong Ha (Optoelectronics Convergence Research Centre, Department of Materials Science and engineering, Chonnam National University) ;
  • Kim, Jin Hyeok (Optoelectronics Convergence Research Centre, Department of Materials Science and engineering, Chonnam National University)
  • 이주연 (신소재공학부, 전남대학교) ;
  • 김인영 (정보통신공학과, 광주과학기술원) ;
  • ;
  • 문종하 (신소재공학부, 전남대학교) ;
  • 김진혁 (신소재공학부, 전남대학교)
  • Received : 2015.11.13
  • Accepted : 2015.12.05
  • Published : 2015.12.31

Abstract

$Cu_2SnS_3$ (CTS) based thin film solar cells (TFSCs) are of great interest because of its earth abundant, low-toxic and eco-friendly material with high optical absorption coefficient of $10^4cm^{-1}$. In this study, the DC sputtered precursor thin films have been sulfurized using rapid thermal annealing (RTA) system in the graphite box under Ar gas atmosphere for 10 minute. The systematic variation of sulfur powder during annealing process has been carried out and their effects on the structural, morphological and optical properties of CTS thin films have been investigated. The preliminary power conversion efficiency of 1.47% with a short circuit current density of $33.9mA/cm^2$, an open circuit voltage of 159.7 mV, and a fill factor of 27% were obtained for CTS thin film annealed with 0.05g of S powder, although the processing parameter s have not yet been optimized.

Keywords

References

  1. M. Powalla, P. Jackson, D. Hariskos, S. Paetel, W. Witte, R. Wurz, E. Lotter, R. Menner, and W. Wischman, Proc. 29th European Photovoltaic Solar Energy Conf., 2014, 3AO.4.2.
  2. D. Tiwari, T. K. Chaudhuri, T. Shripathi, U. Deshpande, and V. G. Sathe, J. Mater. Sci. 25, 3687 (2014).
  3. H. Dahman, S. Rabaoui, A. Alyamani, and L. E. Mir, Vacuum 101, 208 (2014). https://doi.org/10.1016/j.vacuum.2013.08.019
  4. D. Tiwari, T. K. Chaudhuri, T. Shripathi, U. Deshpande, and V. G. Sathe, Appl. Phys. A 117, 1139 (2014). https://doi.org/10.1007/s00339-014-8484-2
  5. A. Kanai, N. Aihara, K. Toyonaga, H. Araki, A. Takeuchi, and H. Katagiri, Proc. 29th European Photovoltaic Solar Energy Conf., 2014, p. 1805.
  6. N. Aihara, A. Kanai, K. Kimura, M. Yamada, K. Toyonaga, H. Araki, A. Takeuchi, and H. Katagiri, Jpn. J. Appl. Phys. 53, 05FW13 (2014). https://doi.org/10.7567/JJAP.53.05FW13
  7. S. A. Vanalakar, G. L. Agawane, S. W. Shin, H. S. Shin, H. S. Yang, P. S. Patil, J. Y. Kim, and J. M. Kim, Acta Mater. 85, 314 (2015). https://doi.org/10.1016/j.actamat.2014.11.043
  8. K. Ayaka, T. Kotoba, C. Kotaro, K. Hironori, A. Hideaki, Fabrication of $Cu_2SnS_3$ thin- film solar cells with power conversion efficiency of over 4%, Jpn. J. Appl. Phys. 54 (2015) 08KC06. https://doi.org/10.7567/JJAP.54.08KC06
  9. N. Mitsuki, F. Junya, Y. Toshiyuki, I. Masanobu, Cu2SnS3 thin- film solar cells fabricated by sulfurization from NaF/Cu/Sn stacked precursor, Appl. Phys. Express 8 8 (2015) 042303. https://doi.org/10.7567/APEX.8.042303
  10. A. Kanai, H. Araki, A. Takeuchi, H. Katagiri, Annealing temperature dependence of photovoltaic properties of solar cells containing $Cu_2SnS_3$ thin films produced by co-evaporation, Phys. Status Solidi B 252 (2015) 1239-1243. https://doi.org/10.1002/pssb.201400297
  11. A.C. Lokhande, K.V. Gurav, E. Jo, C.D. Lokhande, J.H. Kim, Chemical synthesis of $Cu_2SnS_3$(CTS)nanoparticles: Astatusreview, J. Alloys Compd. 656 (2016) 295-310. https://doi.org/10.1016/j.jallcom.2015.09.232