DOI QR코드

DOI QR Code

KF 후열처리 공정시 CIGS 박막의 Na 원소 존재가 태양전지 셀성능에 미치는 영향

KF Post Deposition Treatment Process of Cu(In,Ga)Se2 Thin Film Effect of the Na Element Present in the Solar Cell Performance

  • 손유승 (한국과학기술연구원, 광전하이브리드 연구센터) ;
  • 김원목 (한국과학기술연구원, 광전하이브리드 연구센터) ;
  • 박종극 (한국과학기술연구원, 광전하이브리드 연구센터) ;
  • 정증현 (한국과학기술연구원, 광전하이브리드 연구센터)
  • Son, Yu-Seung (Korea Institute of Science and Technology photoelectric hybrid research center) ;
  • Kim, Won Mok (Korea Institute of Science and Technology photoelectric hybrid research center) ;
  • Park, Jong-Keuk (Korea Institute of Science and Technology photoelectric hybrid research center) ;
  • Jeong, Jeung-hyun (Korea Institute of Science and Technology photoelectric hybrid research center)
  • 투고 : 2015.09.22
  • 심사 : 2015.10.01
  • 발행 : 2015.12.31

초록

The high efficiency cell research processes through the KF post deposition treatment (PDT) of the $Cu(In,Ga)Se_2(CIGS)$ thin film has been very actively progress. In this study, it CIGS thin film deposition process when KF PDT 300 to the processing temperature, 350, $400^{\circ}C$ changed to soda-lime glass (SLG) efficiency of the CIGS thin film characteristics, and solar cell according to Na presence of diffusion from the substrate the effects were analyzed. As a result, the lower the temperature of KF PDT and serves to interrupt the flow of current K-CIGS layer is not removed from the reaction surface, FF and photocurrent is decreased significantly. Blocking of the Na diffusion from the glass substrate is significantly increased while the optical voltage, photocurrent and FF is a low temperature (300, $350^{\circ}C$) in the greatly reduced, and in $400^{\circ}C$ tend to reduce fine. It is the presence of Na in CIGS thin film by electron-induced degradation of the microstructure of CIGS thin film is expected to have a significant impact on increasing the hole recombination rate a reaction layer is formed of the K elements in the CIGS thin film surface.

키워드

참고문헌

  1. J. Eid, H. LIANG, I. Gereige, S. Lee and J. Van Duren, Prog. Photovolt: Res. APPL. 23, 269-280, 2015. https://doi.org/10.1002/pip.2419
  2. S. Marsillac, S. Dorn, Rocheleau and E. Miller, Sol. Energ. Mat. Sol. Cells, 82, 42-52, 2004.
  3. A. Rockett, J.S. Britt, T. Gillespie, C. Marshall, M.M. Al Jassim, F. Hasoon, R. Matson and B Basol, Thin Solid Films 372, 212-217, 2000. https://doi.org/10.1016/S0040-6090(00)01028-2
  4. A. Chirila, S. Buecheler, F. Pianezzi, A. N.Tiwari, High efficient $Cu(In,Ga)Se_2$ solar cells grown on flexible polymer films. Nat. Mater. 10, 857-861 2011. https://doi.org/10.1038/nmat3122
  5. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, M. Powalla, Properties of $Cu(In,Ga)Se_2$ solar cells with new record efficiencies up to 21.7%. Phys. Status Solidi RRL 2015, 9, 28-31. https://doi.org/10.1002/pssr.201409520
  6. A. Chirila, P. Jackson, F. Pianezzi, A. N.Tiwari Potassium-induced surface modification of $Cu(In,Ga)Se_2$ thin films for high-efficiency solar cells. Nat. Mater. 12, 1107-1111, 2013. https://doi.org/10.1038/nmat3789
  7. P. Reinhard, F. Pianezzi, b. Bissig, A. N.Tiwari, $Cu(In,Ga)Se_2$ thin film, solar cell and modules: a boost in efficiency due to potassium. IEEE J-PV2015, 5, 656-663.
  8. D. W. Niles, K. Ramanathan, F. Hasoon and R. Noufi, B.J. Tielsch and J.E. Fulahum, J. Vacuum Sci. Technol. A 15,3044, 1997. https://doi.org/10.1116/1.580902
  9. A. Laemmle, R. Wuerz and Michael Powalla, Phys. Status Solidi RRL, 7, No.9, 631-634, 2013. https://doi.org/10.1002/pssr.201307238
  10. P. Reinhard, B. Bissig, F. Pianezzi, H. Hagendorfer, G. Sozzi, R. Menozzi, C. Gretener, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Alkali-templated surface nanopatterning of chalcogenide thin films: a novel approach toward solar cells with enhanced efficiency, Nano Letters, doi:10.1021/acs.nanolett.Sb00584, 2015.