DOI QR코드

DOI QR Code

Diode Equivalent Parameters of Solar Cell

  • Iftiquar, Sk Md (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Dao, Vinh Ai (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • Received : 2015.10.21
  • Accepted : 2015.12.04
  • Published : 2015.12.31

Abstract

Current characteristic curve of an illuminated solar cell was used to determine its reverse saturation current density ($J_0$), ideality factor (n) and resistances, by using numerical diode simulation. High efficiency amorphous silicon, heterojunction crystalline Si (HIT), plastic and organic-inorganic halide perovskite solar cell shows n=3.27 for a-Si and n=2.14 for improved HIT cell as high and low n respectively, while the perovskite and plastic cells show n=2.56 and 2.57 respectively. The $J_0$ of these cells remain within $7.1{\times}10^{-7}$ and $1.79{\times}10^{-8}A/cm^2$ for poorer HIT and improved perovskite solar cell respectively.

Keywords

References

  1. J.C.H. Phang, D.S.H. Chan, J.R. Phillips, "Accurate analytical method for the extraction of solar cell model parameters", Electron. Lett., 20 (1984) 406-408. https://doi.org/10.1049/el:19840281
  2. D.S.H. Chan, J.R. Phillips, J.C.H. Phang, "A comparative study of extraction methods for solar cell model parameters", Solid State Electronics, 29 (1986) 329-337. https://doi.org/10.1016/0038-1101(86)90212-1
  3. X. Yuan, Y. He, L. Liu, "Parameter extraction of solar cell models using chaotic asexual reproduction optimization", Neural Comput. Appl., (2014).
  4. J. Cabestany, L. Castaner, "Evaluation of solar cell parameters by nonlinear algorithms", Journal of Physics D: Applied Physics, 16 (1983) 2547-2558. https://doi.org/10.1088/0022-3727/16/12/032
  5. J.P. Charles, M. Abdelkrim, Y.H. Muoy, P. Mialhe, "A practical method of analysis of the current-voltage characteristics of solar cells", Solar Cells, 4 (1981) 169-178. https://doi.org/10.1016/0379-6787(81)90067-3
  6. T. Sogabe, A. Ogura, M. Ohba, Y. Okada, "Self-consistent electrical parameter extraction from bias dependent spectral response measurements of III-V multi-junction solar cells", Prog Photovoltaics Res Appl, 23 (2015) 37-48. https://doi.org/10.1002/pip.2392
  7. K. Tada, "Parameter extraction from S-shaped current-voltage characteristics in organic photocell with opposed two-diode model: Effects of ideality factors and series resistance", Phys. Status Solidi A Appl. Mater. Sci., (2015).
  8. D.S.H. Chan, J.C.H. Phang, "Analytical methods for the extraction of solar-cell single- and double-diode model parameters from i-v characteristics", IEEE Trans. Electron Devices, ED-34 (1987) 286-293.
  9. J. Merten, J.M. Asensi, C. Voz, A.V. Shah, R. Platz, J. Andreu J Merten, J.M. Asensi, C. Voz, J. Andreu, "Improved equivalent circuit and analytical model for amorphous silicon solar cells and modules", IEEE Trans. Electron Devices, 45 (1998) 423-429. https://doi.org/10.1109/16.658676
  10. H. Saleem, S. Karmalkar, "An analytical method to extract the physical parameters of a solar cell from four points on the illuminated J-V curve", IEEE Electron Device Letters, 30 (2009) 349-352. https://doi.org/10.1109/LED.2009.2013882
  11. A.K. Das, S. Karmalkar, "Analytical derivation of the closed-form power law J-V model of an illuminated solar cell from the physics based implicit model", IEEE Trans. Electron Devices, 58 (2011) 1176-1181. https://doi.org/10.1109/TED.2010.2104155
  12. H. Fathabadi, "Novel neural-analytical method for determining silicon/plastic solar cells and modules characteristics", Energy Convers. Manage., 76 (2013) 253-259. https://doi.org/10.1016/j.enconman.2013.07.055
  13. V. Lo Brano, G. Ciulla, "An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data", Appl. Energy, 111 (2013) 894-903. https://doi.org/10.1016/j.apenergy.2013.06.046
  14. J. Cubas, S. Pindado, M. Victoria, "On the analytical approach for modeling photovoltaic systems behavior", J Power Sources, 247 (2014) 467-474. https://doi.org/10.1016/j.jpowsour.2013.09.008
  15. T.K.P. Wong, P.C.H. Chan, An equivalent circuit model approach to the numerical modelling of a p-n solar cell and photodetector, Int J Optoelectron, 11 (1997) 29-38.
  16. J. Villanueva, J.A. Anta, E. Guillen, G. Oskam, "Numerical simulation of the current-voltage curve in dye-sensitized solar cells", J. Phys. Chem. C, 113 (2009) 19722-19731. https://doi.org/10.1021/jp907011z
  17. W. Ding, R. Jia, D. Wu, C. Chen, H. Li, X. Liu, T. Ye, "Numerical simulation and modeling of spectral conversion by silicon nanocrystals with multiple exciton generation", J Appl Phys, 109 (2011).
  18. E. Cuce, P.M. Cuce, T. Bali, "An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters", Appl. Energy, 111 (2013) 374-382. https://doi.org/10.1016/j.apenergy.2013.05.025
  19. H. Sakai, T. Yoshida, S. Fujikake, T. Hama, Y. Ichikawa, "Effect of p/i interface layer on dark J-V characteristics and Voc in p-i-n a-Si solar cells", J Appl Phys, 67 (1990) 3494-3499. https://doi.org/10.1063/1.345340
  20. S. Voswinckel, V. Wesselak, B. Lustermann, "Behaviour of amorphous silicon solar modules: A parameter study", Sol. Energy, 92 (2013) 206-213. https://doi.org/10.1016/j.solener.2013.03.006
  21. L. Peng, Y. Sun, Z. Meng, "An improved model and parameters extraction for photovoltaic cells using only three state points at standard test condition", J Power Sources, 248 (2014) 621-631. https://doi.org/10.1016/j.jpowsour.2013.07.058
  22. K. Yoon, Y. Kim, J. Park, C.H. Shin, S. Baek, J. Jang, S.M. Iftiquar, J. Yi, "Preparation and characterization of p-type hydrogenated amorphous silicon oxide film and its application to solar cell", J Non Cryst Solids, 357 (2011) 2826-2832. https://doi.org/10.1016/j.jnoncrysol.2011.03.009
  23. Y. Lee, H. Kim, S.M. Iftiquar, S. Kim, S. Kim, S. Ahn, Y.J. Lee, V.A. Dao, J. Yi, "Study of stacked-emitter layer for high efficiency amorphous/crystalline silicon heterojunction solar cells", J Appl Phys, 116 (2014).
  24. W. Nie, H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.L. Wang, A.D. Mohite, "High-efficiency solution-processed perovskite solar cells with millimeter-scale grains", Science, 347 (2015) 522-525. https://doi.org/10.1126/science.aaa0472
  25. A. Ortiz-Conde, F.J. Garcia Sanchez, J. Muci, "New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I-V characteristics", Sol Energ Mater Sol Cells, 90 (2006) 352-361. https://doi.org/10.1016/j.solmat.2005.04.023
  26. T. Jeranko, H. Tributsch, N.S. Sariciftci, J.C. Hummelen, "Patterns of efficiency and degradation of composite polymer solar cells", Sol Energ Mater Sol Cells, 83 (2004) 247-262. https://doi.org/10.1016/j.solmat.2004.02.028
  27. S.M. Iftiquar, J. Jung, C. Shin, H. Park, J. Park, J. Jung, J. Yi, "Light management for enhanced efficiency of textured n-i-p type amorphous silicon solar cell", Sol Energ Mater Sol Cells, 132 (2014) 348-355.
  28. K.W. Mitchell, A.L. Fahrenbruch, R.H. Bube, "Analysis of the fill factor for n-CdS/p-CdTe solar cells", Solid-State Electron., 20 (1977) 559-561. https://doi.org/10.1016/0038-1101(77)90092-2