DOI QR코드

DOI QR Code

Effect of Process Variation of Al Grid and ZnO Transparent Electrode on the Performance of Cu(In,Ga)Se2 Solar Cells

Al 그리드와 ZnO 투명전도막 의 공정변화에 따른 Cu(In,Ga)Se2 박막태양전지의 특성 연구

  • Cho, Bo Hwan (Department of Materials Science and Engineering, KAIST) ;
  • Kim, Seon Cheol (Department of Materials Science and Engineering, KAIST) ;
  • Mun, Sun Hong (Department of Materials Science and Engineering, KAIST) ;
  • Kim, Seung Tae (Department of Materials Science and Engineering, KAIST) ;
  • Ahn, Byung Tae (Department of Materials Science and Engineering, KAIST)
  • 조보환 (한국과학기술원 신소재공학과) ;
  • 김선철 (한국과학기술원 신소재공학과) ;
  • 문선홍 (한국과학기술원 신소재공학과) ;
  • 김승태 (한국과학기술원 신소재공학과) ;
  • 안병태 (한국과학기술원 신소재공학과)
  • Received : 2015.02.15
  • Accepted : 2015.02.23
  • Published : 2015.03.31

Abstract

CIGS solar cell consisted of various films. In this research, we investigated electrode materials in $Cu(In,Ga)Se_2$ (CIGS) cells, including Al-doped ZnO (ZnO:Al), intrinsic ZnO (i-ZnO), and Al films. The sputtered ZnO:Al film with a sputtering power at 200W showed the lowest series resistance and highest cell efficiency. The electrical resistivity of the 200-W sputtered ZnO:Al film was $5.2{\times}10^{-4}{\Omega}{\cdot}cm$ by the rapid thermal annealing at $200^{\circ}C$ for 1 min. The electrical resistivity of i-ZnO was not measurable due to its high resistance. But the optical transmittance was highest with less oxygen supply and high efficiency cell was achieved with $O_2/(Ar+O_2)$ ratio was 1% due to the increase of short-circuit current. No significant change in the cell performance by inserting a Ni layer between Al and ZnO:Al films was observed.

Keywords

References

  1. J. N. Alexander, S. Higashiya, D. Caskey Jr, H. Efstathiadis, P. Haldar, Deposition and characterization of cadmium sulfide (CdS) by chemical bath deposition using an alternative chemistry cadmium precursor, Solar Engery Mater. Solar Cells, 125, 47-53, 2014. https://doi.org/10.1016/j.solmat.2014.02.017
  2. K. Ellmer, Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties, J. Phys. D : Appl. Phys, 33, R17-R32, 2000. https://doi.org/10.1088/0022-3727/33/4/201
  3. J. Hu, R.G. Gordon, Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition, J. Appl. Phys., 71, 880, 1992. https://doi.org/10.1063/1.351309
  4. Je-hsiung Lan, Jerzy Kanicki, An Alternative Transparent Conducting Oxide to ITO for the a-Si:H TFT-LCD Applications, 54-57, AMLCDs'95 2nd International Workshop, 1995.
  5. S. Ishizuka, K.Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. Nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima, S.Niki, Fabrication of wide-gap Cu(In1-xGaX)$Se_2$ thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness, Solar Energy Mater. solar cells, 87, 1-4, 541-548, 2005. https://doi.org/10.1016/j.solmat.2004.08.017
  6. F. Couzinie-Devy, N.Barreau, J. Kessler, Dependence of ZnO:Al properties on the substrate to target position in RF sputtering, Thin solid Films, 516, 7094-7097, 2008. https://doi.org/10.1016/j.tsf.2007.12.053
  7. D.C. Look, Recent advances in ZnO materials and devices, Mater.Sci. Eng, B80, 383, 2001.
  8. D. S. Wiersma, The smallest random laser, Nature, 406, 132-133, 2000. https://doi.org/10.1038/35018184
  9. P. H. Holloway, T. A. Trottier, B. Abrams, C. Kondoleon, S. L. Jones, J. S. Sebastian, W. J. Thomes and H. Swart, Advances in field emission displays phosphors, J. Vac. Sci. Techol. B, 17, 758, 1999. https://doi.org/10.1116/1.590634
  10. H. CaO, J. Y. Xu, D. Z. Zhang, S. H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, Spatial confinement of laser light in active random media , Phys. Rev. Lett, 84, 5584-5587, 2000. https://doi.org/10.1103/PhysRevLett.84.5584
  11. M.A. Contreras, J.R Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, J. Scofield, and R. Noufi/ High efficiency Cu(In,Ga)$Se_2$-based solar cells: Proc. novel absorber structures, 68-75, 24th IEEE Photovolt, Special. Conf., 1994.
  12. K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, Properties of 19.2% Efficiency $ZnO/CdS/CuInGaSe_2$ Thin-film Solar cells, Prog. Photovolt: Res. Appl, 11, 225-230, 2003. https://doi.org/10.1002/pip.494
  13. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, New world record efficiency for $Cu(In,Ga)Se_2$ thin-film solar cells beyond 20%, Prog. Photovolt: Res. Appl, 19, 894-897, 2011. https://doi.org/10.1002/pip.1078
  14. O. Cao, O. Gunawan, M. Copel, K. B. Reuter, S. J. chey, V. R. Deline, and D. B. Mitzi, Defects in $Cu(In,Ga)Se_2$ 2 Chalcopyrite Semiconductors: A Comparative Study of Material Properties, Defect States, and Photovoltaic Performance, Adv. Energy Mater, 1, 845-853, 2011. https://doi.org/10.1002/aenm.201100344
  15. A. Chirila, P. Bloesch, S. Seyrling, A. Uhi, S. Buecheler, F. Pianezzi, C. Fella, J. Perrenoud, L. Kranz, R. Verma, D. Guettler, S. Nishiwaki, Y.E. Romanyuk, G.Bilger, D. Bremaud and A.N. Tivari, $Cu(In,Ga)Se_2$ solar cell grown on flexible polymer substrate with efficiency exceeding 17%, Prog. Photovolt: Res. Appl, 19, 560-564, 2011. https://doi.org/10.1002/pip.1077
  16. P. Reinhard, A. Chirila, F. Pianezzi, S. Nishiwaki, S. Buecheler and A. N. Tivari, High efficiency flexible $Cu(In,Ga)Se_2$ Solar cells, 79-82, AM-FPD 2013 20th International Workshop, 2013.
  17. P. Liska, K. R. Thampi, M. Gratzel, D. Bremaud, D. Rudmann, H. M. Upadhyaya, and A. N. Tiwari, Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency, Appl. Phys. Lett., 88, 20310, 2006.
  18. M. B. Ard, K. Granath, L. Stolt, Growth of $Cu(In,Ga)Se_2$ thin films by coevaporation using alkaline precursors, Thin Solid Films, 361, 9-16, 2000.
  19. Malm U, Edoff M, Influence from front contact sheet resistance on extracted diode parameters in CIGS solar cells, rog. Photovolt: Res. Appl., 16, 113-121, 2008. https://doi.org/10.1002/pip.784
  20. Chia-Hua Huang, Hung-Lung Cheng, Wei-En Chang, and Ming-Show Wong, Comprehensive Characterization of DC Sputtered AZO Films for CIGS Photovoltaics, J. Electrochem. Soc., 158, H510-H515, 2011. https://doi.org/10.1149/1.3559456