DOI QR코드

DOI QR Code

Distribution of Fish Assemblage and Stable Isotope Composition of Reeds according to Geomorphic Characteristics of Lagoons along the East Sea

동해안 석호의 지형학적인 특성에 따른 어류군집분포와 갈대의 안정동위원소비

  • Lee, Jaeyong (Research Institute of Nature and Human) ;
  • Park, Seungchul (Environmental Research Institute at Kangwon National University) ;
  • Kim, Minseob (Fundamental Environment Research Department Environmental Measurement and Analysis Center, National Institute of Environmental Research, Ministry of Environment) ;
  • Choi, Jae-Seok (Environmental Research Institute at Kangwon National University) ;
  • Lee, Kwangyeol (Department of Biological Science, Kangwon National University) ;
  • Shin, Kyunghoon (Department of Marine Sciences and Convergent Technology, Hanyang University)
  • 이재용 ((주)자연과사람 환경기술연구소) ;
  • 박승철 (강원대학교 환경연구소) ;
  • 김민섭 (국립환경과학연구원 환경측정분석센터) ;
  • 최재석 (강원대학교 환경연구소) ;
  • 이광열 (강원대학교 생명과학과) ;
  • 신경훈 (한양대학교 해양융합과학과)
  • Received : 2014.09.01
  • Accepted : 2015.03.27
  • Published : 2015.03.31

Abstract

Abstract The purpose of study is to identify the relationship between stable isotope composition of reed stems in coastal and understand the structure of the fish community in 10 lagoons along the East Sea. The fish species composition (particularly, anadromous fish species) and relative abundance of trophic guilds was influenced by difference of geomorphic characteristics among lagoons. Reed stems ${\delta}^{13}C$ and ${\delta}^{15}N$ values ranged from $-28.40{\pm}0.11$‰ to $-26.87{\pm}0.25$‰ and $-1.09{\pm}1.45$‰ to $12.08{\pm}0.53$‰, respectively. The differences in reed stem ${\delta}^{15}N$ values might be associated with anthropogenic landuse and the geomorphic characteristics among lagoons. These results provide useful information to improve the conservation of fish habitats (biodiversity), preserve lagoon habitats and contribute to watershed management effect against anthropogenic pollution from watershed in these lagoon ecosystems.

본 연구에서는 동해안에서 10개의 석호들을 대상으로 어류군집의 조성의 차이를 파악하였고, 갈대 줄기의 탄소와 질소안정동위원소분석을 통하여 각 석호생태계의 유역환경을 예측하였다. 석호들 사이에서 어류의 조성(특히, 회유성 어류) 및 섭식기능군은 지형학적인 특성에 따라 분포의 차이를 보였다. 10곳의 석호들에서 갈대 줄기 ${\delta}^{13}C$${\delta}^{15}N$값 각각 $-28.40{\pm}0.11$‰에서 $-26.87{\pm}0.25$‰과 $-1.09{\pm}1.45$‰에서 $12.08{\pm}0.53$‰의 범위를 보였다. 이들 석호에서의 갈대의 줄기 ${\delta}^{15}N$ 값의 차이는 토지 이용에 따른 인위적인 오염원의 차이와 석호의 지형학적인 특성 등과 관련이 있음을 보였다. 이 연구는 어류의 서식지 확보, 석호생태계에서의 생물다양성의 보전과 유역의 오염원에 대한 관리를 위한 유용한 정보를 제공할 수 있다.

Keywords

References

  1. Anderson, C. and G. Cabana. 2006. Does ${\delta}^{15}N$ in river food webs reflect the intensity and origin of N loads from the watershed? Science of the Total Environment 367: 968-978. https://doi.org/10.1016/j.scitotenv.2006.01.029
  2. Arai, T., J. Yang and N. Miyazaki. 2006. Migration flexibility between freshwater and marine habitats of the pond smelt Hypomesus nipponensis. Journal of Fish Biology 68: 1388-1398. https://doi.org/10.1111/j.0022-1112.2006.01002.x
  3. Barile, P.J. 2004. Evidence of Anthropogenic Nitrogen Enrichment of the Littoral Waters of East Central Florida. Journal of Coastal Research 20: 1237-1245.
  4. Benson, E.R., J.M. O'Neil and W.C. Dennison. 2008. Using the aquatic macrophyte Vallisneria americana (wild celery) as a nutrient bioindicator. Hydrobiologia 596: 187-196. https://doi.org/10.1007/s10750-007-9095-0
  5. Borderelle, A.L., D. Gerdeaux, P. Giraudoux and V. Verneaux. 2009. Influence of watershed's anthropogenic activities on fish nitrogen and carbon stable isotope ratios in nine French lakes. Knowledge and Management of Aquatic Ecosystems 392: 1-13.
  6. Choi, E., J.S. Choi, S.C. Park, Y.S. Jang, K.Y. Lee and J.K. Choi. 2007a. Temporal and spatial distribution of fish community in the largoon Youngrang, Korea. Korean Journal of Environment and Ecology 21: 506-514.
  7. Choi, K.C., S.R. Jeon, I.S. Kim and Y.M. Son. 2002. Colored illustrations of the freshwater fishes of Korea. Hyangmunsa, Seoul. (in Korean)
  8. Choi, W.J., G.H. Han, S.M. Lee, G.T. Lee, K.S. Yoon, S.M. Choi and H.M. Ro. 2007b. Impact of land-use types on nitrate concentration and d15N in unconfined groundwater in rural areas of Korea. Agriculture Ecosystems and Environment 120: 259-268. https://doi.org/10.1016/j.agee.2006.10.002
  9. Cloern, E.J., E.A. Canuel and D. Harris. 2002. Stable Carbon and Nitrogen Isotope Composition of Aquatic and Terrestrial Plants of the San Francisco Bay Estuarine System. Limnology and Oceanography 47: 713-729. https://doi.org/10.4319/lo.2002.47.3.0713
  10. Fry, B. and E.B. Sherr. 1984. ${\delta}^{13}C$ Measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Science 27: 13-47.
  11. Franco, A., F. Riccato, P. Torricelli and P. Franzoi. 2009. Fish assemblage response to environmental pressures in the Venice lagoon. Transitional Waters Bulletin 3: 29-44.
  12. Fukuhara, H., F. Nemoto, Y. Takeuchi and N. Toda. 2007. Nitrate dynamics in a reed belt of a shallow sand dune lake in Japan: Analysis of nitrate retention using stable nitrogen isotope ratios. Hydrobiologia 584: 49-58. https://doi.org/10.1007/s10750-007-0589-6
  13. Gannes, L.Z., C.M. del Rio and P. Koch. 1998. Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comparative Biochemistry and Physiology 119A: 725-737.
  14. Grice, A.M., N.R. Loneragan and W.C. Dennison. 1996. Light intensity and the interactions between physiology, morphology and stable isotope ratios in five species of seagrass. Journal of Experimental Marine Biology and Ecology 195: 91-110. https://doi.org/10.1016/0022-0981(95)00096-8
  15. Heaton, T.H.E. 1986. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chemical Geology 59: 87-102. https://doi.org/10.1016/0168-9622(86)90059-X
  16. Hoffman, J.C. and D.A. Bronk. 2006. Interannual variation in stable carbon and nitrogen isotope biogeochemistry of the Mattaponi River, Virginia. Limnology and Oceanography 51: 2319-2332. https://doi.org/10.4319/lo.2006.51.5.2319
  17. Human, L. 2009. Reeds as indicators of nutrient enrichment in the East Kleinmonde estuary. Nelson Mandela Metropolitan University. pp. 108.
  18. Jackson, J.B.C., M.X. Kirby, W.H. Berger, K.A. Bjorndal, L.W. Botsford, B.J. Bourque, R.H. Bradbury, R. Cooke, J. Erlandson, J.A. Estes, T.P. Hughes, S. Kidwell, C.B. Lange, H.S. Lenihan, J.M. Pandolfi, C.H. Peterson, R.S. Steneck, M.J. Tegner and R.R. Warner. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293: 629-638. https://doi.org/10.1126/science.1059199
  19. Keeley, J.E. and D.R. Sandquist. 1992. Carbon: freshwater plants. Plant. Cell and Environment 15: 1021-1035. https://doi.org/10.1111/j.1365-3040.1992.tb01653.x
  20. Kim, I.S. 1997. Illustrated Encyclopedia of Fauna and Flora of Korean Vol. 37 Freshwater Fishes. Ministry of education, pp. 518. (in Korean)
  21. Kim, I.S., Y. Choi, C.L. Lee, Y.J. Lee, B.J. Kim and J.H. Kim. 2005. Illustrated Book of Korean Fishes. Kyohak Press Co., Seoul, pp. 512. (in Korean)
  22. Kohzu, A., T. Miyajima, I. Tayasu, C. Yoshimizu, F. Hyodo, K. Matsui, T. Nakano, E. Wada, N. Fujita and T. Nagata. 2008. Use of stable nitrogen isotope signatures of riparian macrophytes as an indicator of anthropogenic N inputs to river ecosystems. Environmental Science and Technology 42: 7837-7841. https://doi.org/10.1021/es801113k
  23. Kuramoto, T. and M. Minagawa. 2001. Stable carbon and nitrogen isotopic characterization of organic matter in a mangrove ecosystem on the Southwestern coast of Thailand. Journal of Oceanography 57: 421-431. https://doi.org/10.1023/A:1021232132755
  24. Lapointe, B.E., P.J. Barile, M.M. Littler and D.S. Littler. 2005. Macroalgal blooms on southeast Florida coral reefs II. Cross-shelf discrimination of nitrogen sources indicates widespread assimilation of sewage nitrogen. Harmful Algae 4: 1106-1122. https://doi.org/10.1016/j.hal.2005.06.002
  25. Lee, E.H., M. Kim, H.M. Kim, M. Son, K.H. Chang and G.S. Nam. 2013. Ecological characteristics and distribution of fish in the downstream region of Gyeongan stream. Korean Society of Limnology 31: 478-485.
  26. Lee, E.J. and K.S. Lee. 2014. Changes of phytoplankton community with inflow of sea water in Gyoungpo Lake; comparison between 1998 and 2012. Korean Society of Limnology 47: 48-56. https://doi.org/10.11614/KSL.2014.47(S).048
  27. Lee, J.Y., J.K. Kim, J.S. Choi, J.S. Owen and B. Kim. 2013. Habitat specific variation in stable C and N isotope ratios of pond smelt (Hypomesus nipponensis). Animal Cells and Systems 17(3): 213-219. https://doi.org/10.1080/19768354.2013.792293
  28. Lee, S.Y. 1990. Net aerial primary productivity, litter production and decomposition of the reed Phragmites communis in a nature preserve in Hong Kong: management implications. Marine Ecology Progress Series 66: 161-173. https://doi.org/10.3354/meps066161
  29. Li, Z., M. Zhang, T. Cao, M. Zhang, L. Ni, P. Xie and J. Xu. 2011. Variation in stable isotope signatures of the submersed macrophyte Vallisneria natans collected from several shallow lakes in China. Journal of Freshwater Ecology 26: 429-433. https://doi.org/10.1080/02705060.2011.562000
  30. Lorrain, A., N. Savoye, L. Chauvaud, Y.M. Paulet and N. Naulet. 2003. Decarbonation and preservation method for the analysis of organic C and N content and stable isotope ratios of low-carbonated suspended particulate material. Analytica Chimica Acta 491: 125-133. https://doi.org/10.1016/S0003-2670(03)00815-8
  31. McCelland, J.W. and I. Valiela. 1997. Nitrogen-stable isotope signatures in estuarine food webs: A record of increasing urbanization in coastal watersheds. Limnology and Oceanography 42: 930-937. https://doi.org/10.4319/lo.1997.42.5.0930
  32. Meyerson, L.A., K. Saltonstall, L. Windham, E. Kiviat and S. Findlay. 2000. A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetlands Ecology and Management 8: 89-103. https://doi.org/10.1023/A:1008432200133
  33. Min, B.M. 2011. Sediment properties and growth of Phragmites austrlis in mud tidal flat. The Korea Society of Environmental Restoration Technology 14: 57-69.
  34. Myung, J.G. 2002. The sea fishes of Korea. Darakwon Press Co., Seoul. (in Korean)
  35. Nakai, N. and S.U. Hong. 1982. Paleoclimatic features were examined by the geochemical method with sediments from Lake Yonglang in Korea. Korean Society of Limnology 15: 13-18.
  36. Nelson, J.S. 2006. Fishes of the world (4th ed.). Wiley, New York.
  37. Newton, A. and S.M. Mudge. 2005. Lagoon-sea exchanges, nutrient dynamics and water quality management of the Ria Formosa (Portugal). Estuarine Coastal and Shelf Science 62: 405-414. https://doi.org/10.1016/j.ecss.2004.09.005
  38. Odiete, W.O., R.C. Nwokoro and T. Daramola. 2003. Biological assessment of four courses in Lagos metropolis receiving industrial and domestic waste discharge. Nigeria Environmental Society 1: 1-14.
  39. Orth, R.J. and K.A. Moore. 1983. Chesapeake Bay: An unprecedented decline in submerged aquatic vegetation. Science 222: 51-53. https://doi.org/10.1126/science.222.4619.51
  40. Park, C.R. and J.H. Oh. 2012. The characteristics of waterfowls communities at lagoons in East seashore. Korean Journal of Nature Conservation 6: 42-48.
  41. Park, K.H. and Y.D. Kwon. 2012. A study on the characteristics of water qualities for lagoon in the eastern coast of Korea - focused on Lake Hyangho -. The Korea Society for Environmental Analysis 15: 124-132.
  42. Park, S. 2014. Characteristics of fish community according to environmental factors in lagoon, Korea (in Korean). Dissertation for the Degree of Doctor, Biological Sciences, Inha University.
  43. Pombo, L., M. Elliott and J.E. Rebelo. 2005. Environmental influences on fish assemblage distribution of an estuarine coastal lagoon, Ria de Aveiro (Portugal). Scientia Marina 69: 143-159. https://doi.org/10.3989/scimar.2005.69n1143
  44. Rueda, M. and O. Defeo. 2003. Spatial structure of fish assemblages in a tropical estuarine lagoon: combining multivariate and geostatistical techniques. Journal of Experimental Marine Biology and Ecology 296: 93-112. https://doi.org/10.1016/S0022-0981(03)00319-8
  45. Seitzinger, S.P., W.S. Gardner and A.K. Spratt. 1991. The effect of salinity on aquatic sediments: implications for benthic nutrient recycling. Estuaries 14: 167-174. https://doi.org/10.2307/1351690
  46. Smith, B.N. and S. Epstein. 1971. Two categories of $^{13}C/^{12}C$ ratios for higher plants. Plant Physiology 47: 380-384. https://doi.org/10.1104/pp.47.3.380
  47. Swanson, C., T. Reid, P.S. Young and J.J.J. Cech. 2000. Comparative environmental tolerances of threatened delta smelt (Hypomesus transpacificus) and introduced wakasagi (H. nipponensis) in an altered California estuary. Oecologia 123: 384-390. https://doi.org/10.1007/s004420051025
  48. Vitoria, L., N. Otero, A. Soler and A. Canals. 2004. Fertilizer characterization: Isotopic data (N, S, O, C, and Sr). Environmental Science Technology 38: 3254-3262. https://doi.org/10.1021/es0348187
  49. Wada, E., R. Imaizumi and Y. Takai. 1984. Natural abundance of $^{15}N$ in soil organic matter with special reference to paddy soils in Japan: biogeochemical implications on the nitrogen cycle. Geochemical Journal 18: 109-123. https://doi.org/10.2343/geochemj.18.109
  50. Wigand, C., R. Comeleo, R. McKinney, G. Thursby and M. Charpentier. 2001. Outline of a new approach to evaluate ecological integrity of salt marshes. Human and Ecological Risk Assessment 7: 1541-1554. https://doi.org/10.1080/20018091095177A
  51. Wonju Regional Environmental Office (WREO). 2009. Lagoon Ecosystem Restoration Project Recommendation for Restoration and Management.
  52. Yu, F., Y. Zong, J.M. Lloyd, G. Huang, M.J. Leng, C. Kendrick, A.L. Lamb and W.W.S. Yim. 2010. Bulk organic ${\delta}^{13}C$ and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China. Estuarine, Coastal and Shelf Science 87: 618-630. https://doi.org/10.1016/j.ecss.2010.02.018