영상 및 지자계를 이용한 실내 측위 기술 동향

  • Published : 2015.07.31

Abstract

개인용 스마트 기기와 같은 첨단 기기의 사용이 보편화되고, 이에 따른 각종 서비스가 증가하고 있는 추세이다. 사용자 개인에 맞는 서비스를 제공하기 위해서는 사용자의 실내 측위 기술이 핵심적이다. 본 고에서는 여러 측위 기술 중에서도 로봇 공학 분야에서 활발히 연구되고 있는 영상 센서와 지자계 센서를 활용한 실내 측위 기술에 대해서 소개하고자 한다. 이미 스마트폰에 탑재되어 있는 일반적인 모노 카메라와 지자계 측정 센서를 이용한 방식 외에, 최근 깊이 정보가 측정 가능한 카메라도 스마트폰용으로 개발되고 있으므로, 이러한 진보된 센서를 이용한 기술에 대해서도 소개하고자 한다. 이 기술들은 현재는 실내용 서비스 로봇에 적용 가능한 형태로 많이 개발되고 있지만, 향후에는 사용자의 실내 측위로도 많이 응용될 것이라 생각된다.

Keywords

References

  1. S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, MIT Press. 2005.
  2. Microsoft Kinect. Available online: https://www.microsoft.com/en-us/kinectforwindows/ (accessed on July 12, 2015).
  3. Google Tango Project. Available online: https://www.google.com/atap/project-tango/ (accessed on July 12, 2015)
  4. T. Sattler, B. Leibe, and L. Kobbelt, "Fast imagebased localization using direct 2D-to-3D matching," Proc. of the IEEE Int'l Conf. on Computer Vision, pp. 667-674. 2011.
  5. Y. Li, N. Snavely, and D. P. Huttenlocher, "Location recognition using prioritized feature matching," Proc. of the European Conf. on Computer Vision, pp. 791-804, 2010.
  6. H. Lim, S. N. Sinha, M. F. Cohen, M. Uyttendaele, and H. J. Kim, "Real-time monocular image-based 6-DoF localization," The Int'l Journal of Robotics Research, vol. 34, no. 4-5, pp. 476-492, 2015. https://doi.org/10.1177/0278364914561101
  7. R. Hartley, and A. Zisserman, "Multiple view geometry in computer vision," Cambridge University Press, 2003
  8. H. Kim, D., T. Oh, and H. Myung, "Localization of a Monocular Camera using a Feature-based Probabilistic Map," Journal of Institute of Control, Robotics and Systems (in Korean), March 2015.
  9. W. Jeong, and K. M. Lee, "CV-SLAM: A new ceiling vision-based SLAM technique," Proc. of the IEEE Int'l Conf. on Intelligent Robots and Systems, pp. 3195-3200, 2005.
  10. A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, "MonoSLAM: Real-time single camera SLAM," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 6, pp. 1052-1067, 2007. https://doi.org/10.1109/TPAMI.2007.1049
  11. M. Li, and A. I. Mourikis, "Vision-aided inertial navigation with rolling-shutter cameras," The Int'l Journal of Robotics Research, vol. 33, no. 11, pp. 1490-1507, 2014. https://doi.org/10.1177/0278364914538326
  12. P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, "RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments," Proc. of the 12th Int'l Symposium on Experimental Robotics, 2010.
  13. P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, "RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments," Int. J. Robot. Res., vol. 31, no. 5, pp. 647-663, Apr. 2012. https://doi.org/10.1177/0278364911434148
  14. N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard, "Real-time 3D visual SLAM with a hand-held RGB-D camera," Proc. of the RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum, vol. 180, 2011.
  15. D. Lee, H. Kim, and H. Myung, " GPU-based real-time RGB-D 3D SLAM," Proc. of 9th Int'l Conf. on Ubiquitous Robots and Ambient Intelligence, pp. 46-48, 2012.
  16. D. Lee, and H. Myung, "Solution to the SLAM Problem in Low Dynamic Environments Using a Pose Graph and an RGB-D Sensor," Sensors, vol. 14, no. 7, pp. 12467-12496, 2014. https://doi.org/10.3390/s140712467
  17. M. Kaess, A. Ranganathan, and F. Dellaert "iSAM: Incremental Smoothing and Mapping," IEEE Trans. on Robotics, vol. 24, no. 6, pp. 1365-1378, Dec. 2008. https://doi.org/10.1109/TRO.2008.2006706
  18. M. Angermann, M. Frassl, M. Doniec, B. J. Julian, and P. Robertson, "Characterization of the indoor magnetic field for applications in localization and mapping," Proc. of the Int'l Conf. on Indoor Positioning and Indoor Navigation, pp. 1-9, 2012.
  19. J. Haverinen and A. Kemppainen, "Global indoor self-localization based on the ambient magnetic field," Robot. Auton. Syst., vol. 57, no. 10, pp. 1028-1035, Oct. 2009. https://doi.org/10.1016/j.robot.2009.07.018
  20. Frassl et al., "Magnetic Maps of Indoor Environments for Precise Localization of Legged and Non-legged Locomotion," Proc. of IEEE/RSJ Int'l Conf. on Intelligent Robots and Systems, pp. 913-920, 2013
  21. I. Vallivaara, J. Harverinen, A. Kemppainen, and J. Roning, "Magnetic field-based SLAM method for solving the localization problem in mobile robot floor-cleaning task," Proc. of the IEEE Int'l Conf. on Advanced Robotics, pp. 198-203, 2011.
  22. J.-S. Gutmann, E. Eade, P. Fong, and M. E. Munich, "Vector field SLAM-localization by learning the spatial variation of continuous signals," IEEE Trans. Robot., vol. 28, no. 3, pp. 650-667, Jun. 2012. https://doi.org/10.1109/TRO.2011.2177691
  23. S.-M. Lee, J. Jung, and H. Myung, "DV-SLAM (Dual-sensor-based Vector-field SLAM) and observability analysis," IEEE Trans. Ind. Electron., vol. 23, no. 1, pp. 37-51, Jan. 2015.
  24. S.-M. Lee, J. Jung, and H. Myung, "Geomagnetic Field-based Localization with Bicubic Interpolation for Mobile Robots," Int. J. Control Autom. Syst., vol.13, no.4, Aug. 2015.
  25. J. Jung, T. Oh, and H. Myung, "Magnetic field constraints and sequence-based matching for indoor pose graph SLAM," Robotics and Autonomous Systems, vol.70, pp.92-105, 2015. https://doi.org/10.1016/j.robot.2015.03.003