The Structure of the Ventricle in the Heart of the Pond Smelt, Hypomesus nipponensis (Osmeridae)

바다빙어과 빙어 (Hypomesus nipponensis)의 심실 구조

  • Received : 2015.06.08
  • Accepted : 2015.09.25
  • Published : 2015.09.30

Abstract

The structure of the ventricle in the heart of Hypomesus nipponensis was investigated by light and scanning electron microscope. The heart consisted of four consecutive chambers, the sinus venosus, atrium, ventricle and bulbus arteriosus. The wall of the ventricle was divided into endocardium, myocardium, subepicardium and epicardium. The valves were observed in the artrioventricular and bulboventricular junctions. The ventricular myocardium was an entirely spongy without coronary vessels. The trabecular network was formed with lumina included a central lumen and the trabecula was cylindrical shape. Collagen distribution was apparent in the subepicardium, artrioventricular valve and bulboventricular valve. But in the trabeculae, collagen distribution was observed partly in the base of the ventricle. Especially, the endocardial bridges were observed between trabeculae. These results might be considered that the structure of the ventricle in the heart of pond smelt is adapted to sedentary habit associated with its habitat and lifestyle.

빙어의 심실 구조를 광학현미경과 주사전자현미경으로 관찰하였다. 빙어의 심장은 정맥동, 심방, 심실 및 동맥구가 연속적으로 배열되어 있었다. 심실의 외벽은 심내막, 심근층, 심외막하층 및 심외막으로 구분되었고, 심방과 심실 사이의 방실판막 및 심실과 동맥구 사이의 구실판막이 관찰되었다. 심실은 주머니 모양이었으며, 심근층은 해면성 심근으로만 구성되어 있었고 관상혈관은 분포하지 않았다. 심실에서 소주들은 중심 내강과 작은 내강들을 형성하였으며, 소주는 원기둥 모양이었다. 심외막하층, 방실판막 및 구실판막에서 아교질의 분포가 관찰되었으나 소주에서는 심실의 기저부에서 부분적으로 관찰되었다. 특히 소주들 사이에서는 심내막교가 관찰되었다. 이와 같은 결과는 육봉형 빙어가 서식환경 및 생활양식에 적응한 결과로 생각된다.

Keywords

References

  1. Farrell, A.P. and D.R. Jones. 1992. The heart. Hoar, W.S., D.J. Randall and A.P. Farrell, Fish physiology, vol. XII, The cardiovascular system. Part A. Academic, San Diego, pp. 1-87.
  2. Garofalo, F., S. Imbrogno, B. Tota and D. Amelio. 2012. Morpho-functional characterization of the goldfish (Garassius auratus L.) heart. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 163: 215-222. https://doi.org/10.1016/j.cbpa.2012.05.206
  3. Icardo, J.M. 2012. The teleost heart: A morphological approach. Wang, T. and D. Sedmera, In ontogeny and phylogeny of the vertebrate heart, Springer-Verag, New Yok Inc., pp. 35-53.
  4. Icardo, J.M., S. Imbrogno, A. Gattuso, E, Colvee and B. Tota. 2005. The heart of Sparus auratus: a reappraisal of cardiac functional morphology in teleosts. J. Exp. Zool., 303A: 665-675. https://doi.org/10.1002/jez.a.195
  5. Jensen, F.B., M. Nikinmaa and R.E. Weber. 1993. Environmental perturbations of oxygen transport in teleost fishes: causes, consequences and compensations. Rankin, J.C. and F.B. Jensen, Fish Ecophysiology, Chapman & Hall, London, pp. 161-169.
  6. Johnson, A.C., A.J. Turko, J.M. Klaiman, E.F. Johnston and T.E. Gillis. 2014. Cold acclimation alters the connective tissue content of the zebrafish (Danio rerio) heart. J. Exp. Biol., 217: 1868-1875. https://doi.org/10.1242/jeb.101196
  7. Kim, I.S. and J.Y. Park. 2002. Freshwater fishes of Korea. Kyo-Hak Pub. Co. Ltd., Seoul, pp. 149-150. (in Korean)
  8. Kim, I.S., Y. Choi, C.L. Lee, Y.H. Lee, B.J. Kim and J.H. Kim. 2005. Illustrated book of Korean fishes. Kyo-Hak Pub. Co. Ltd., Seoul, pp. 262-263. (in Korean)
  9. Lepilina, A., A.N. Coon, K. Kikuchi, J.E. Holdway, R.W. Roberts, C.G. Burns and K.D. Poss. 2006. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell., 127: 607-619. https://doi.org/10.1016/j.cell.2006.08.052
  10. Park, N.K. and D.S. Reu. 2015. A histological study on the heart in the false dace (Pseudorasbora parva). Korean J. Ichthyol., 27: 26-32. (in Korean)
  11. Pieperhoff, S., W. Bennett and A.P. Farrell. 2009. The intercellular organization of the two muscular systems in the adult salmonid heart, the compact and the spongy myocardium. J. Anat., 215: 536-547. https://doi.org/10.1111/j.1469-7580.2009.01129.x
  12. Sanchez-Quintana, D., V. Garcia-Martinez, V. Climent and J.M. Hurle. 1995. Morphological analysis of the fish heart ventricle: myocardial and connective tissue architecture in teleost species. Ann. Anat., 177: 267-274. https://doi.org/10.1016/S0940-9602(11)80198-6
  13. Santer, R.M. 1985. Morphology and innervation of the fish heart. Adv. Anat. Embryol., 89: 1-102. https://doi.org/10.1007/978-3-642-70135-1_1
  14. Santer, R.M. and J.L. Cobb. 1972. The fine structure of the heart of the teleost, Pleuronecters platessa L.. Z. Zellforch Mikrosk. Anat., 131: 1-14. https://doi.org/10.1007/BF00307196
  15. Santer, R.M. and M. Greer-Walker. 1980. Morphological studies on the ventricle of teleost and elasmobranch hearts. J. Zoo., 190: 259-272.
  16. Santer, R.M., M. Greer-Walker, L. Emerson and P.R. Withames. 1983. On the morphology of the heart ventricle in marine teleost fish (Teleostei). Comp. Biochem. Physiol. A, 76: 453-459. https://doi.org/10.1016/0300-9629(83)90445-0
  17. Sheehan, D.C. and B.B. Hrapchak. 1980. Connective tissue and muscle fiber stains. Entrline, M.D., Theory and practice of histotechnology, 2nd ed., The C. V. Mosby Company, London, pp. 181-201.
  18. Taneda, Y., S. Konno, S. Makino, M. Morioka, K. Fukuda, Y. Imai, A. Kudo and A. Kawakami. 2010. Epigenetic control of cardiomyocyte production in response to a stress during the medaka heart development. Dev. Biol., 340: 30-40. https://doi.org/10.1016/j.ydbio.2010.01.014
  19. Tota, B. 1989. Myoarchitecture and vascularization of the elasmobranch heart ventricle. J. Exp. Zool. (suppl), 2: 122-135.
  20. Tota, B., V. Cimini, G. Salvatore and G. Zummo. 1983. Comparative study of the arterial and lacunary systems of the ventricular myocardium of the elasmobranch and teleost fishes. Am. J. Anat., 167: 15-32. https://doi.org/10.1002/aja.1001670103
  21. Tota, B. and F. Garofalo. 2012. Fish heart growth and function: from gross morphology to cell signaling and back. Sedmera, D. and T. Wang, Ontogeny and phylogeny of the vertebrate heart, Springer, New York, pp. 55-74.
  22. Yelon, D. 2001. Cardiac patterning and morphogenesis in the zebrafish. Dev. Dyn., 222: 552-563. https://doi.org/10.1002/dvdy.1243