DOI QR코드

DOI QR Code

동결건조 보호제와 기질이 동결건조된 Bacillus sp. SH1RP8의 생존율에 미치는 영향

Effect of Substrates and Lyoprotectant on the Survival Ratio of Lyophilized Bacillus sp. SH1RP8

  • 홍선화 (수원대학교 환경에너지공학과) ;
  • 심준규 (수원대학교 환경에너지공학과) ;
  • 이은영 (수원대학교 환경에너지공학과)
  • Hong, Sunhwa (Department of Environmental and Energy Engineering, The University of Suwon) ;
  • Sim, Jun Gyu (Department of Environmental and Energy Engineering, The University of Suwon) ;
  • Lee, Eun Young (Department of Environmental and Energy Engineering, The University of Suwon)
  • 투고 : 2015.07.29
  • 심사 : 2015.10.15
  • 발행 : 2015.12.28

초록

본 연구는 식물성장촉진 근권세균인 Bacillus sp. SH1RP8를 친환경 생물비료로 이용하기 위하여 수행되었다. SH1RP8 균주를 동결건조시 세포의 용혈을 방지하도록 여러 가지 동결건조 보호제를 첨가하여 균주의 성장과 활성에 미치는 영향을 알아보았다. SH1RP8 균주의 동결건조 시 동결건조 보호제로 skim milk, glucose, peptone 등을 이용하였을 때, 그 중 5%의 skim milk를 첨가하였을 때 가장 높은 (30.6%)의 생존율을 보였다. 또한, 균주의 성장을 촉진하는 기질 그룹을 첨가하여 5%의 skim milk 단독으로 첨가한 경우와 기질 그룹을 각각 첨가한 경우의 동결건조 보호 효과를 비교하여 보았다. 그 결과 5% skim milk에 glycerol을 동시에 첨가할 경우 균주의 생존율이 skim milk 단독 첨가효과와 비교 시 214.29%의 향상율을 보여주었다. 또한 동결건조된 Bacillus sp. SH1RP8 은 매우 효과적인 PGPR로 활성을 보여주어 생물비료로서의 훌륭한 기능이 기대된다.

In order to develop an eco-friendly biofertilizer, a plant growth promoting rhizobacterium (PGPR), Bacillus sp., SH1RP8 was investigated. SH1RP8 was lyophilized via freeze-drying along with other protective agents that protect cells from lysis. The freezedried powder of Bacillus sp. SH1RP8, containing 5% skim milk (w/v), exhibited the highest survival rate of 30.6% among all the protective agents (skim milk, glucose, and peptone). The lyoprotective effect of the skim milk, mixture including 5% skim milk, and substrates on the survival of the test strain was examined. Control group was added only skim milk and test groups were added skim milk and other substrates. As a result, the group supplemented with both glycerol and 5% skim milk showed the protective effect much higher by 214.29% than the control group. Freeze-dried Bacillus sp. SH1RP8 could be a good candidate as a potential biofertilizer due to its effective PGPR activity.

키워드

참고문헌

  1. Agasimani CA, Mudagiryappa M, Sreenivas MN. 1994. Response of ground nut to phosphate solubilizing microorganisms. Groundnut News 6: 5-7.
  2. Bozolu TF, Ozilgen M, Bakir U. 1987. Survival kinetics of lactic acid starter cultures during and after freeze drying. Enzym Microbiol. Tech. 9: 531-537. https://doi.org/10.1016/0141-0229(87)90082-2
  3. Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift KMGM, Schripsema J, Kroon B, et al. 1998. Biocontrol by phenazine-1-carboxamideproducing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. Radicis lycopersici. Mol. Plant-Microbe Interact. 11: 1069-1077. https://doi.org/10.1094/MPMI.1998.11.11.1069
  4. Dubey SK, Billore SD. 1992. Phosphate solubilising microorganisms (PSM) as inoculant and their role in augmenting crop productivity in India: A review. Crop. Res. 5: 11-24.
  5. Garland JL, Mills AL. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole carbon source utilization. Appl. Environ. Microbiol. 57: 2351-2359.
  6. Heckly RJ. 1961. Preservation of bacteria by lyophilization. Adv. Appl. Microbiol. 2: 1-28.
  7. Hong SH, Lee EY. 2014. Vegetation restoration and prevention of coastal sand dunes erosion using ion exchange resins and the plant growth-promoting rhizobacteria Bacillus sp. SH1RP8 isolated from indigenous plants. Int. Biodeterior. Biodegradation 95: 262-269. https://doi.org/10.1016/j.ibiod.2014.05.026
  8. Illmer P, Schinner E. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol. Bioehem. 24: 389-395. https://doi.org/10.1016/0038-0717(92)90199-8
  9. Jeong EJ, Moon DW, Oh JS, Moon JS, Eom HJ, Choi HS, et al. 2012. Composition optimization of cabbage extract medium for cell growth of Lactobacillus plantarum. Korean Soc. Biotechnol. Bioeng. J. 27: 347-351.
  10. Johnson DL, Anderson DR, McGrath SP. 2005. Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol. Biochem. 37: 2334-2336. https://doi.org/10.1016/j.soilbio.2005.04.001
  11. Lebeau T, Braud A, Jezequel K. 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review. Environ. Pollut. 153: 497-522. https://doi.org/10.1016/j.envpol.2007.09.015
  12. Lee EY, Hong SH. 2013. Plant growth-promoting ability by the newly isolated bacterium Bacillus aerius MH1RS1 from indigenous plant in sand dune. J. Korean Soc. Environ. Eng. 35: 687-693. https://doi.org/10.4491/KSEE.2013.35.10.687
  13. Leveau JH, Lindow SE. 2005. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl. Environ. Microbiol. 71: 2365-2371. https://doi.org/10.1128/AEM.71.5.2365-2371.2005
  14. Lim YB, Park NS, Kim YM. 2001. Screening of lactic acid bacteria for the development of probiotics and the effect of cryoprotectant agents. Korean J. Food Nutr. 14: 441-445.
  15. Lucy M, Reed E, Glick BR. 2004. Application of free living plant growth promoting rhizobacteria. Antonie Van Leeuwenhoek 86: 1-25. https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
  16. Nowlan B, Dodia MS, Singh SP, Patel BKC. 2006. Bacillus okhensis sp. nov., a halotolerant and alkalitolerant bacterium from an Indian saltpan. Int. J. Syst. Evol. Microbiol. 56: 1073-1077. https://doi.org/10.1099/ijs.0.63861-0
  17. Othman AR, Bakar NA, Halmi MIE, Johari WLW, Ahmad A, Jirangon H. et al. 2013. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi. BioMed Res. Int. 2013: 1-9.
  18. Park GS, Jang EK, Kim MS, Shin JH. 2012. Insecticidal activity and stability by freeze-drying of entomopathogenic bacteria, Photorhabdus temperata M1021. J. Appl. Biol. Chem. 55: 123-127. https://doi.org/10.3839/jabc.2011.069
  19. Park KS. 2011. Development of biopesticide and role of Bacillus spp. KIC News. 14: 1-12.
  20. Perkins AE, Nicholson WL. 2008. Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. J. Bacteriol. 190: 807-814. https://doi.org/10.1128/JB.00901-07
  21. Seo SY, Kim YG. 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Korean J. Appl. Entomol. 50: 171-178. https://doi.org/10.5656/KSAE.2011.07.0.24
  22. Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA. 2006. Root associated bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fertil. Soils 42: 267-272. https://doi.org/10.1007/s00374-005-0024-y
  23. Stamford NP, Santos CERS, Dias SHL. 2007. Phosphate rock biofertilizer with Acidithiobacillus and rhizobia improves nodulation and yield of cowpea (Vigna unguiculata) in greenhouse and field conditions. Trop. Grassl. 41: 222-230.
  24. Tao XQ, Lu GN, Liu JP, Li T, Yang LN. 2009. Rapid degradation of phenanthrene by using Sphingomonas sp. GY2B immobilized in calcium alginate gel beads. Int. J. Environ. Res. Public. Health 6: 2470-2480. https://doi.org/10.3390/ijerph6092470
  25. Yoon SS, Lee HO, Yu JH. 1986. Effect of the amino acid mixture on freeze-drying and preseravation of Lactobacillus casei YIT 9018. Korean J. Appl. Microbial. Bioeng. 14: 421-426.
  26. Wolfe J, Bryant G. 1999. Freezing, drying, and/or vitrification of membrane-solute-water systems. Cryobiology 39: 103-129. https://doi.org/10.1006/cryo.1999.2195
  27. Zhao G, Zhang G. 2005. Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze-drying. J. Appl. Microbiol. 99: 333-338. https://doi.org/10.1111/j.1365-2672.2005.02587.x