DOI QR코드

DOI QR Code

Synthesis of Aminated Poly(ether imide) for the Preparation of Bi-polar Membranes and Their Application to Hypochlorite Production through the Surface Direct Fluorination

바이폴라막 제조를 위한 폴리에테르이미드의 아민화 합성 및 표면불소화를 통한 차아염소산 생성

  • Kim, Cheong Seek (Department of Industrial Engineering Chemistry, Chungbuk National University) ;
  • Kang, SuYeon (Department of Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Chemical Engineering, Hannam University) ;
  • Park, Soo-Gil (Department of Industrial Engineering Chemistry, Chungbuk National University)
  • Received : 2014.10.10
  • Accepted : 2014.12.23
  • Published : 2015.03.25

Abstract

Poly(phenylene oxide) (PPO) and polyether imide (PEI) were sulfonated and aminated to create sulfonated poly(phenylene oxide) (SPPO) and aminated polyether imide (APEI), respectively. Characterization of the SPPO and APEI were performed via measurements of FTIR, thermogravimetry (TGA), swelling degree, ion exchange capacity (IEC), and ion conductivity. Next, the surfaces of these membranes were modified by surface fluorination at room temperature. The surface fluorinated SPPO and APEI membranes underwent characterization again for the mentioned measurements to determine any differences. The 3 types of bi-polar membranes were prepared by varying the IEC of the APEI at a fixed SPPO IEC value, which were applied to the low and high NaCl concentration of feed solution at the different current density, respectively. The hypochlorite concentration derived from the surface fluorinated membranes was dependent on the IEC of the APEI and ranged from 491 to 692 ppm at $80mA/m^2$. At low current density of $5mA/m^2$, the hypochlorite concentrations ranged from 18 to 28 ppm for the 4 hrs surface fluorinated membranes and their durability increased greatly.

폴리페닐렌옥사이드(PPO)와 폴리에테르이미드(PEI)에 대해 각각 설폰화(SPPO) 및 아민화(APEI) 반응이 이루어졌다. SPPO와 APEI의 특성평가를 위하여 FTIR, 열무게분석(TGA), 팽윤도, 이온교환용량(IEC) 및 이온전도도 등에 대한 측정을 하였다. 표면불소화를 실시한 후 표면불소화된 SPPO와 APEI 막과 불소화하지 않은 막과의 차이점을 알아보기 위하여 위에서 실시한 특성평가를 다시 수행하여 비교하였다. SPPO막의 이온교환용량을 고정시킨 후 APEI의 이온교환용량을 변경하면서 전체적으로 3개 유형의 바이폴라막을 제조하였고, 이를 차염소산 발생을 위하여 여러 전류밀도 하에서 저농도 및 고농도 소금용액에 적용하였다. 표면불소화된 막의 차염소산 생성 농도는 APEI의 이온교환용량에 의존하며 $80mA/m^2$에서 차염소산 농도 491-692 ppm의 결과를 얻었으며, $5mA/m^2$에서 18-28 ppm의 차염소산 농도를 나타내었으며 내구성이 매우 상승된 것을 보여 주었다.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. T. Xu, J. Membr. Sci., 263, 1 (2005). https://doi.org/10.1016/j.memsci.2005.05.002
  2. N. P. Beezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, Adv. Colloid Interface Sci., 139, 3 (2008). https://doi.org/10.1016/j.cis.2008.01.002
  3. H. Strathmann, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam, Netherlands, 2004.
  4. F. Zaviska, P. Drogui, and G. Pablo, Desalination, 296, 16 (2012). https://doi.org/10.1016/j.desal.2012.03.023
  5. S. Savari, S. Sachdeva, and A. Kumar, J. Membr. Sci., 310, 246 (2008). https://doi.org/10.1016/j.memsci.2007.10.049
  6. N. Krstajic, V. Nakic, and M. Spasojevic, J. Appl. Electrochem., 21, 637 (1991). https://doi.org/10.1007/BF01024853
  7. F. G. Wilhelm, Ph.D. Dissertation, University of Twente, 2001.
  8. R. Y. M. Huang and J. J. Kim, J. Appl. Polym. Sci., 29, 4017 (1984). https://doi.org/10.1002/app.1984.070291234
  9. B. Kruczek and T. Matsuura, J. Membr. Sci., 146, 263 (1998). https://doi.org/10.1016/S0376-7388(98)00120-3
  10. J. W. Rhim, G. Chowdhury, and T. Matsuura, J. Appl. Polym. Sci., 76, 735 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000502)76:5<735::AID-APP16>3.0.CO;2-N
  11. G. Wang, Y. Weng, D. Chu, D. Xie, and R. Chen, J. Membr. Sci., 326, 4 (2009). https://doi.org/10.1016/j.memsci.2008.09.037
  12. E. N. Komkova, D. F. Stamatialis, H. Strathmann, and M. Wessling, J. Membr. Sci., 244, 25 (2004). https://doi.org/10.1016/j.memsci.2004.06.026
  13. D. S. Kim, H. I. Cho, D. H. Kim, B. S. Lee, Bo S. Lee, S. W. Yoon, Y. S. Kim, G. Y. Moon, H. B yun, and J. W. Rhim, J. Membr. Sci., 342, 138 (2009). https://doi.org/10.1016/j.memsci.2009.06.034
  14. J. W. Rhim, H. B. Park, C. S. Lee, J. H. Jun, and Y. M. Lee, J. Membr. Sci., 238, 143 (2004). https://doi.org/10.1016/j.memsci.2004.03.030
  15. A. E. Greenberg, R. R. Trussel, and L. S. Clesceri, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, U.S.A., 1985.
  16. Y. Pan, Y. Huang, and B. Liao, J. Appl. Polym. Sci., 61, 1111 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1111::AID-APP6>3.0.CO;2-P
  17. I. Honma, O. Nishikawa, T. Sugimoto, S. Nomura, and H. Nakajima, Fuel Cells, 2, 52 (2002). https://doi.org/10.1002/1615-6854(20020815)2:1<52::AID-FUCE52>3.0.CO;2-G
  18. J. A. Dean, Lange's Handbook of Chemistry, McGraw-Hill Professional, U.S.A, 1999.
  19. A. P. Kharitonov, Yu. L. Moskvin, V. V. Teplyakov, and J. D. Le Roux, J. Fluorine Chem., 93, 129 (1999). https://doi.org/10.1016/S0022-1139(98)00278-4
  20. A. P. Kharitonov, R. Taege, G. Ferrier, V. V. Teplyakov, D. A. Syrtsova, and G.-H. Koops, J. Fluorine Chem., 126, 251 (2005). https://doi.org/10.1016/j.jfluchem.2005.01.016
  21. A. P. Kharitonov, J. Org. Coatings, 61, 192 (2008). https://doi.org/10.1016/j.porgcoat.2007.09.027
  22. D. H. Shin, N. Kim, and Y. T. Lee, J. Membr. Sci., 376, 302 (2011). https://doi.org/10.1016/j.memsci.2011.04.045
  23. J. W. Rhim, B. Lee, H. H. Park, and C. H. Seo, Macromol. Res., 22, 361 (2014). https://doi.org/10.1007/s13233-014-2051-8
  24. A. P. Kharitonov, J. Fluorine Chem., 103, 123 (2000). https://doi.org/10.1016/S0022-1139(99)00312-7

Cited by

  1. Study on Acid/Base Formation by Using Sulfonated Polyether Ether Ketone/Aminated Polysulfone Bipolar Membranes in Water Splitting Electrodialysis vol.55, pp.7, 2016, https://doi.org/10.1021/acs.iecr.5b03137
  2. Direct Fluorination as Method of Improvement of Operational Properties of Polymeric Materials vol.12, pp.12, 2015, https://doi.org/10.3390/polym12122836