DOI QR코드

DOI QR Code

Analytical Study for Performance Improvement of Studs for Steel Plate Concrete(SC) Walls subjected to Combined Loads

조합하중을 받는 강판 콘크리트(SC) 벽체에서 스터드의 성능개선을 위한 해석적 연구

  • 이성태 (인하공업전문대학 토목환경과)
  • Received : 2014.11.13
  • Accepted : 2014.12.02
  • Published : 2015.03.30

Abstract

This study analytically reviewed the behavior of Steel Plate Concrete(SC) walls subjected to combined loads of axial force, flexural moment, and shear force to investigate the effects of shape and arrangement spacing of studs on the behavior of SC walls. To perform it, 9 cases of finite element analyses considering the different shape and spacing of studs in SC wall were carried out. The results showed that, for SC walls combined steel plate and concrete according to the Design Code, the compressive strength is higher than the tensile strength. Compared results from the finite element analyses of SC walls subjected to combined loads with Design Code showed that all cases were higher than the design strength. For KEPIC SNG, the moment and shear force were not influenced by the axial force of 0.1 to 0.2 times axial strength, however, from the analyses, it was found that the values were decreased as the axial force is increased.

이 연구에서는 SC 전단벽의 전단 연결재인 스터드의 배치와 형상이 SC 전단벽의 거동에 미치는 영향을 살펴보기 위해 전단벽체가 전단력과 축하중, 휨모멘트 및 전단력의 조합하중을 받을 때의 거동을 해석적으로 검토하였다. 이를 위해 서로 다른 배치간격과 형상의 스터드가 배열된 SC 전단벽을 대상으로 유한요소해석을 수행하였다. 강판과 콘크리트가 설계기준에 맞게 잘 합성된 SC 벽체에서 인장강도에 비해 압축강도가 약 3배정도 컸다. 유한요소법으로 SC 전단벽의 조합하중에 대한 거동을 수치해석하여 설계기준과 비교한 결과, 이들 모두 설계강도를 상회하는 결과를 나타내었다. KEPIC SNG의 경우, 축하중강도의 0.1~0.2배 수준의 축하중에는 영향이 없었으나 해석결과는 축하중이 증가할수록 모멘트와 전단강도가 감소함을 확인하였다.

Keywords

References

  1. Carreira, D. J., and Chu, K. H. (1985), Stress-strain Relationship for Plain Concrete in Compression, ACI Journal, American Concrete Institute, 82(6), 797-804.
  2. Cho, S. G., Lim, J. S., Jeong, Y. D., and Yi S. T. (2014a), Analytical Study for Performance Improvement of Studs for Steel Plate Concrete(SC) Walls subjected to Bending Moment, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 18(2), 74-81 (in Korean). https://doi.org/10.11112/jksmi.2014.18.2.074
  3. Cho, S. G., Lim, J. S., Jeong, Y. D., and Yi S. T. (2014b), Analytical Study for Design of Shape and Arrangement Spacing of Studs in Steel Plate Concrete(SC) Wall subjected to Shear and Axial Forces, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 18(4), 67-76 (in Korean). https://doi.org/10.11112/jksmi.2014.18.4.067
  4. Evans, R. H., and Marathe, M. S. (1967), Microcracking and Stress-strain Curves for Concrete in Tension, Materials and Structures, 1(1), 61-64.
  5. Jankowiak, T., and Lodygowski, T. (2005), Identification of Parameters of Concrete Damage Plasticity Constitutive Model, Foundation of civil and environmental engineering, No. 6, Poznan university of technology, Poland, 53-69.
  6. Kanchi, M. (1996), Experimental Study on A Concrete Filled Steel Structure Part.2 Compressive Tests(1), Summary of technical papers of annual meeting, architectural institute of Japan, Structures, 1071-1072.
  7. Korea Concrete Institute (KCI) (2012), The Korean Concrete Structure Design Code, Korea Concrete Institute (in Korean).
  8. Korea Electric Association (KEA) (2010), Nuclear Safety Related Structures : Steel-Plate Concrete Structure, KEPIC-SNG, Korea Electric Association (in Korean).
  9. Ozaki, M., Akita, S., Oosuga, H., Nakayama, T., and Adachi, N. (2004), Study on Steel Plate Reinforced Concrete Panels Subjected to Cyclic In-Plane Shear, Nuclear Engineering and Design, 228(1), 225-244. https://doi.org/10.1016/j.nucengdes.2003.06.010
  10. Prakash, A., Anandavalli, N., Madheswaran, C. K., Rajasankar, J., and Lakshmanan, N. (2011), Three Dimensional FE Model of Stud Connected Steel-Concrete Composite Girders Subjected to Monotonic Loading, International Journal of Mechanics and Applications, 1(1), 1-11. https://doi.org/10.5923/j.mechanics.20110101.01
  11. Varma, A. H., Malushte, S. R., Sener, K. C., and Booth, P. N. (2011), Analysis Recommendations for Steel-Composite (SC) Walls of Safety Related Nuclear Facilities, Structures Congress of ASCE, 1871-1880.
  12. Varma, A. H., Malushte, S. R., Sener, K. C., and Lai, Z. (2014), Steel-plate Composite (SC) Walls for Safety Related Nuclear Facilities: Design for In-plane Forces and Out-of-plane Moments, Nuclear Engineering and Design, 269, 240-249. https://doi.org/10.1016/j.nucengdes.2013.09.019

Cited by

  1. Research on steel-plate–concrete walls with inclined studs under combined loads vol.171, pp.1, 2018, https://doi.org/10.1680/jstbu.16.00137