DOI QR코드

DOI QR Code

Estimating the Changes in Forest Carbon Dynamics of Pinus densiflora and Quercus variabilis Forests in South Korea under the RCP 8.5 Climate Change Scenario

RCP 8.5 기후변화 시나리오에 따른 소나무림과 굴참나무림의 산림 탄소 동태 변화 추정 연구

  • Lee, Jongyeol (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Han, Seung Hyun (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Kim, Seongjun (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Chang, Hanna (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Yi, Myong Jong (Department of Forest Resources, Kangwon National University) ;
  • Park, Gwan Soo (Department of Environment and Forest Resources, Chungnam National University) ;
  • Kim, Choonsig (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Son, Yeong Mo (Department of Forest and Climate Change, Korea Forest Research Institute) ;
  • Kim, Raehyun (Department of Forest and Climate Change, Korea Forest Research Institute) ;
  • Son, Yowhan (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University)
  • 이종열 (고려대학교 대학원 환경생태공학과) ;
  • 한승현 (고려대학교 대학원 환경생태공학과) ;
  • 김성준 (고려대학교 대학원 환경생태공학과) ;
  • 장한나 (고려대학교 대학원 환경생태공학과) ;
  • 이명종 (강원대학교 산림자원학과) ;
  • 박관수 (충남대학교 산림환경자원학과) ;
  • 김춘식 (경남과학기술대학교 산림자원학과) ;
  • 손영모 (국립산림과학원 기후변화연구센터) ;
  • 김래현 (국립산림과학원 기후변화연구센터) ;
  • 손요환 (고려대학교 대학원 환경생태공학과)
  • Received : 2014.08.06
  • Accepted : 2015.01.27
  • Published : 2015.03.30

Abstract

Forests contain a huge amount of carbon (C) and climate change could affect forest C dynamics. This study was conducted to predict the C dynamics of Pinus densiflora and Quercus variabilis forests, which are the most dominant needleleaf and broadleaf forests in Korea, using the Korean Forest Soil Carbon (KFSC) model under the two climate change scenarios (2012-2100; Constant Temperature (CT) scenario and Representative Concentration Pathway (RCP) 8.5 scenario). To construct simulation unit, the forest land areas for those two species in the 5th National Forest Inventory (NFI) data were sorted by administrative district and stand age class. The C pools were initialized at 2012, and any disturbance was not considered during the simulation period. Although the forest C stocks of two species generally increased over time, the forest C stocks under the RCP 8.5 scenario were less than those stocks under the CT scenario. The C stocks of P. densiflora forests increased from 260.4 Tg C in 2012 to 395.3 (CT scenario) or 384.1 Tg C (RCP 8.5 scenario) in 2100. For Q. variabilis forests, the C stocks increased from 124.4 Tg C in 2012 to 219.5 (CT scenario) or 204.7 (RCP 8.5 scenario) Tg C in 2100. Compared to 5th NFI data, the initial value of C stocks in dead organic matter C pools seemed valid. Accordingly, the annual C sequestration rates of the two species over the simulation period under the RCP 8.5 scenario (65.8 and $164.2g\;C\;m^{-2}\;yr^{-1}$ for P. densiflora and Q. variabilis) were lower than those values under the CT scenario (71.1 and $193.5g\;C\;m^{-2}\;yr^{-1}$ for P. densiflora and Q. variabilis). We concluded that the C sequestration potential of P. densiflora and Q. variabilis forests could be decreased by climate change. Although there were uncertainties from parameters and model structure, this study could contribute to elucidating the C dynamics of South Korean forests in future.

산림은 많은 양의 탄소를 저장하고 있으며, 산림 탄소 동태는 기후변화에 따라 변화할 것으로 예상된다. 본 연구는 우리나라 산림에서 가장 우점하는 침엽수종과 활엽수종인 소나무림과 참나무림을 대상으로 최근 개발 및 개선된 한국형산림토양탄소모델(Korean Forest Soil Carbon model; KFSC model)을 이용하여 두 가지 기후변화 시나리오(2012년 기온이 2100년까지 유지되는 시나리오(CT), Representative Concentration Pathway(RCP) 8.5 시나리오) 하에서의 산림 탄소 동태를 예측하였다. 5차 국가산림자원조사 자료로부터 소나무림과 굴참나무림 조사구들을 추출한 뒤, 이를 행정구역(9개 도, 7개 특별 광역시) 및 영급(1-5영급, 6영급 이상)별로 분류하여 탄소 동태 모의 단위를 설정하였다. 탄소 저장고는 2012년을 기준으로 초기화하였으며, 모의 기간인 2012년부터 2100년까지 모든 교란은 고려하지 않았다. 모의 결과 산림 탄소 저장량은 시간이 경과함에 따라 전반적으로 증가하지만, CT 시나리오에 비하여 RCP 8.5 시나리오 하에서 산림 탄소 저장량이 낮게 나타났다. 소나무림의 탄소 저장량(Tg C)은 2012년에 260.4에서 2100년에는 각각 395.3(CT 시나리오) 및 384.1(RCP 8.5 시나리오)로 증가하였다. 굴참나무림의 탄소 저장량(Tg C)은 2012년에 124.4에서 2100년에는 219.5(CT 시나리오) 및 204.7(RCP 8.5 시나리오)로 각각 증가하였다. 5차 국가산림자원조사 자료와 비교한 결과, 고사유기물 탄소 저장량의 초기값은 타당한 것으로 나타났다. 모의 기간 동안 소나무림과 굴참나무림의 연간 탄소 흡수율($g\;C\;m^{-2}\;yr^{-1}$)은 CT 시나리오 하에서 각각 71.1과 193.5, RCP 8.5 시나리오 하에서 각각 65.8과 164.2로 추정된다. 따라서 우리나라 소나무림과 굴참나무림의 탄소 흡수잠재력은 지구 온난화에 의하여 감소할 것으로 예상된다. 비록 모델의 구조와 파라미터로부터 불확실성이 존재하지만 본 연구는 미래 산림 탄소 동태 파악에 기여할 것으로 기대된다.

Keywords

References

  1. Chen, W., J. Chen, J. Liu, and J. Cihlar, 2000: Approaches for reducing uncertainties in regional forest carbon balance. Global Biogeochemical Cycles 14(3), 827-838. https://doi.org/10.1029/1999GB001206
  2. Choi, S., W.-K. Lee, H. B. Kawk, and S. Kim, 2009: Predicting the vegetation distribution and terrestrial carbon-fluxes using MC1 model. ESRI User Conference Proceeding, 1-8.
  3. Cramer, W., A. Bondeau, F. I. Woodward, I. C. Prentice, R. A. Betts, V. Brovkin, P. M. Cox, V. Fisher, J. A. Foley, A. D. Friend, C. Kucharik, M. R. Lomas, N. Ramankutty, S. Sitch, B. Smith, A. White, and C. Young-Molling, 2001: Global response of terrestrial ecosystem structure and function to $CO_2$ and climate change: results from six dynamic global vegetation models. Global Change Biology 7(4), 357-373. https://doi.org/10.1046/j.1365-2486.2001.00383.x
  4. Cui, G., W.-K. Lee, D. Kim, E. J. Lee, H. Kwak, H.-A. Choi, D.-A. Kwak, S. Jeon, and W. Zhu, 2014: Estimation of forest carbon budget from land cover change in South and North Korea between 1981 and 2010. Journal of Plant Biology 57(4), 225-238. https://doi.org/10.1007/s12374-014-0165-3
  5. Davi, H., E. Dufrene, C. Francois, G. L. Maire, D. Loustau, A. Bosc, S. Rambal, A. Granier, and E. Moors, 2006: Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems. Agricultural and Forest Meteorology 141(1), 35-56. https://doi.org/10.1016/j.agrformet.2006.09.003
  6. Davidson, E. A., and I. A. Janssens, 2006: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081), 165-173. https://doi.org/10.1038/nature04514
  7. Dixon, R. K., A. M. Solomon, S. Brown, R. A. Houghton, M. C. Trexier, and J. Wisniewski, 1994: Carbon pools and flux of global forest ecosystems. Science 263(5144), 185-190. https://doi.org/10.1126/science.263.5144.185
  8. Gower, S. T., R. E. McMurtrie, and D. Murty, 1996: Aboveground net primary production decline with stand age: potential causes. Trends in Ecology and Evolution 11(9), 378-382. https://doi.org/10.1016/0169-5347(96)10042-2
  9. Grosso, S. D., W, Parton, T., Stohlgren, D. Zheng, D. Bachlet, S. Prince, K. Hibbard, and R. Olson, 2008: Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89(8), 2117-2126. https://doi.org/10.1890/07-0850.1
  10. Hlasny, T., Z. Barcza, I. Barka, K. Merganieova, R. Sedmak, A. Kern, J. Pajtik, B. Balazs, M. Fabrika, and G. Churkina, 2014: Future carbon cycle in mountain spruce forests of Central Europe: modelling framework and ecological inferences. Forest Ecology and Management 328(15), 55-68. https://doi.org/10.1016/j.foreco.2014.04.038
  11. Hong, J., C. Shim, M. Lee, G. Baek, W. Song, S. Jeon, and Y. Park, 2011: Net primary production changes over Korea and climate factors. Korean Journal of Remote Sensing 27(4), 467-480. (in Korean with English abstract) https://doi.org/10.7780/kjrs.2011.27.4.467
  12. Intergovernmental Panel on Climate Change (IPCC), 2007: Climate change 2007: synthesis report, Core Writing Team, R. K. Pachauri, and A. Reisinger (Eds.). IPCC, Geneva, Switzerland, 104pp.
  13. Intergovernmental Panel on Climate Change (IPCC), 2014: 2013 Revised supplementary methods and good practice guidance arising from the Kyoto Protocol, K. N. Tanabe, Srivastava, J. Baasansuren, M. Fukuda, and T. Troxler (Eds.). IPCC, Geneva, Switzerland.
  14. Ju, W. M., J. M. Chen, D. Harvey, and S. Wang, 2007: Future carbon balance of China's forests under climate change and increasing $CO_2$. Journal of Environmental Management 85(3), 328-562.
  15. Kim, C., 2002: Mass loss rates and nutrient dynamics of decomposing fine roots in a sawtooth oak and Korean pine stands. Korean Journal of Ecology 25(4), 235-239. https://doi.org/10.5141/JEFB.2002.25.4.235
  16. Korea Forest Research Institute, 2010: Study on the basis of forest carbon accounting in Korea. Korea Forest Service, Daejeon, Korea, 436pp. (in Korean)
  17. Korea Forest Research Institute, 2011: The 5th national forest inventory report. Korea Forest Research Institute, Korea, 166pp.
  18. Korea Forest Research Institute, 2013: Development of greenhouse gas inventory system in forest sector of post-2012 climate regime. Korea Forest Service, Korea, 477pp. (in Korean).
  19. Korea Forest Service, 2012: Table of tree volume/mass and yield table, Korea Forest Service, Korea, 261pp. (in Korean)
  20. Krinner, G., N. Viovy, N. Noblet-Ducoudre, G. Ogee, J. Polcher, P. Friedlingstein, P. Ciais, S. Sitch, and I. C. Prentice, 2005: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles 19(1), 1-33.
  21. Kurz, W. A., M. J. Apps, T. M. Webb, and P. J. McNamee, 1992: Carbon budget of the Canadian forest sector: phase I (inf. Rep. NOR-X-326). Northern Forestry Centre, Canada.
  22. Kurz, W. A., C. C. Dymond, T. M. White, G. Stinson, C. H. Shaw, G. J. Rampley, C. Smyth, B. N. Simpson, E. T. Neilson, J. A. Trofymow, J. Metsaranta, and M. J. Apps, 2009: CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecological Modelling 220(4), 480-504. https://doi.org/10.1016/j.ecolmodel.2008.10.018
  23. Kwon, S.-S., S.-H. Choi, and S.-D. Lee, 2012: Estimation of spatial-temporal net primary productivity and soil carbon storage change in the capital area of South Korea under climate change. Environmental Impact Assessment 21(5), 757-765. (in Korean with English abstract)
  24. Lee, A. R., N. J. Noh, T. K. Yoon, S. K. Lee, K. W. Seo, W.-K. Lee, Y. Cho, and Y. Son, 2009: Estimation of forest soil carbon stocks with Yasso using a dendrochronological approach. Journal of Korean Forest Society 98(6), 791-798. (in Korean with English abstract)
  25. Lee, A. R., K. Yi, Y. Son, R. H. Kim, C. Kim, G. S. Park, K. H. Lee, and M. J. Yi, 2010: Approaches for developing a Korean model through analysis of overseas forest soil carbon models. Journal of Korean Forest Society 99(6), 791-801.
  26. Lee, J., T. K. Yoon, S. Han, S. Kim, M. J. Yi, G. S. Park, C. Kim, Y. M. Son, R. Kim, and Y. Son, 2014: Estimating the carbon dynamics of South Korean forests from 1954 to 2012. Biogeosciences 11(17), 4637-4650. https://doi.org/10.5194/bg-11-4637-2014
  27. Li, X., M. J. Yi, Y. Son, G. Jin, and S. S. Han, 2010: Forest biomass carbon accumulation in Korea from 1954 to 2007. Scandinavian Journal of Forest Research 25(6), 554-563. https://doi.org/10.1080/02827581.2010.524892
  28. Lieth, H., 1975: Modeling the primary productivity of the world. Primary productivity of the Biosphere, Springer Berlin Heidelberg, 237-263.
  29. Liski, J., T. Palosou, M. Peltoniemi, and R. Sievanen, 2005: Carbon and decomposition model Yasso for forest soils. Ecological Modelling 189(1-2), 168-182. https://doi.org/10.1016/j.ecolmodel.2005.03.005
  30. Lutzow, M., and I. Kogel-Knabner, 2009: Temperature sensitivity of soil organic matter decomposition--what do we know?. Biology and Fertility of Soils 46(1), 1-15. https://doi.org/10.1007/s00374-009-0413-8
  31. McMahon, S. M., G. G. Parker, and D. R. Miller, 2010: Evidence for a recent increase in forest growth. Proceedings of the National Academy of Sciences 107(8), 3611-3615. https://doi.org/10.1073/pnas.0912376107
  32. Noh, N. J., Y. Son, S. K. Lee, T. K. Yoon, K. W. Seo, C. Kim, W. K. Lee, S. W. Bae, and J. H. Hwang, 2010: Influence of stand density on soil $CO_2$ efflux for a Pinus densiflora forest in Korea. Journal of Plant Research 123(4), 411-419. https://doi.org/10.1007/s10265-010-0331-8
  33. Noh, N. J., 2011: Carbon and nitrogen dynamics in a natural Pinus densiflora forest with different stand densities. Ph.D. Dissertation. Korea University.
  34. Pan, Y., R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, A. Shvidenko, S. L. Lewis, J. G. Canadell, P. Ciais, R. B. Jackson, S. W. Pacala, A. D. McGuire, S. Piao, A. Rautiainen, S. Sitch, and D. Hayes, 2011: A large and persistent carbon sink in the world's forests. Science 333(6045), 988-993. https://doi.org/10.1126/science.1201609
  35. Park, C. W., J. Lee, M. Yi, C. Kim, G. S. Park, R. H. Kim, K. H. Lee, and Y. Son, 2013: Estimation of change in soil carbon stock of Pinus densiflora forests in Korea using KFSC model under RCP 8.5 climate change scenario. Climate Change Research 4(2), 77-93. (in Korean with English abstract)
  36. Park, G. S., J. G. Lim, D. H. Kim, and S. Ohga, 2006: Net fine root carbon production in Quercus natural forest ecosystems of Korea. Journal of the Faculty of Agriculture, Kyushu University 51(1), 57-61.
  37. Park, G. S., G. N. Kang, S. J. Lee, H. G. Lee, S. Y. Lee, H. M. Chae, and S. Ohga, 2010: Net fine root carbon production in Pinus densiflora, Pinus koraiensis, Larix leptolepis and Quercus acutissima stands, Gongju area, Chungnam province, Korea. Journal of the Faculty of Agriculture, Kyushu University 55(1), 73-76.
  38. Peltoniemi, M., T. Palosou, S. Monni, and R. Makipaa, 2006: Factors affecting the uncertainty of sinks and stocks of carbon in Finnish forests soils and vegetation. Forest Ecology and Management 232(1), 75-85. https://doi.org/10.1016/j.foreco.2006.05.045
  39. Shanin, V. N., A. S. Komarov, A. V. Mikhailov, and S. S. Bykhovets, 2011: Modelling carbon and nitrogen dynamics in forest ecosystems of Central Russia under different climate change scenarios and forest management regimes. Ecological Modelling 222(14), 2262-2275. https://doi.org/10.1016/j.ecolmodel.2010.11.009
  40. Shin, J. Y., M. S. Won, K. Kim, and M. Y. Shin, 2013: Predicting the effect of climate change on forest biomass by different ecoprovinces and forest types in Korea. Korean Journal of Agricultural and Forest Meteorology 15(3), 119-129. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2013.15.3.119
  41. Sitch, S., B. Smith, I. C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J. O. Kaplan, S. Levis, W. Lucht, M. T. Sykes, K. Thonicke, and S. Venevsky, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9(2), 161-185. https://doi.org/10.1046/j.1365-2486.2003.00569.x
  42. Yi, K., C. W. Park, S. R. Ryu, K. H. Lee, M. J. Yi, C. Kim, G. S. Park, R. Kim, and Y. Son, 2013: Simulating the soil carbon dynamics of Pinus densiflora forests in central Korea. Scandinavian Journal of Forest Research 28(3), 241-256. https://doi.org/10.1080/02827581.2012.735698
  43. Yoo, S., D. A. Kwak, G. Cui, W.-K. Lee, H. Kwak, A. Ito, Y. Son, and S. Jeon, 2013: Estimation of the ecosystem carbon budget in South Korea between 1999 and 2008. Ecological Research 28(6), 1045-1059. https://doi.org/10.1007/s11284-013-1085-2
  44. Yoon, T. K., H. Chung, R.-H. Kim, N. J. Noh, K. W. Seo, S. K. Lee, W. Jo, and Y. Son, 2011: Coarse woody debris mass dynamics in temperate natural forests of Mt. Jumbong, Korea. Journal of Ecology and Field Biology 34(1), 115-125. https://doi.org/10.5141/JEFB.2011.014

Cited by

  1. Influences of Termite Activities on Ecosystem Carbon Cycle: Focusing on Coarse Woody Debris Decomposition vol.105, pp.1, 2016, https://doi.org/10.14578/jkfs.2016.105.1.1
  2. Brief history of Korean national forest inventory and academic usage vol.43, pp.3, 2016, https://doi.org/10.7744/kjoas.20160032
  3. A Meta-analysis on the Effect of Forest Thinning on Diameter Growth and Carbon Stocks in Korea vol.104, pp.4, 2015, https://doi.org/10.14578/jkfs.2015.104.4.527
  4. Estimating the age-dependent changes in carbon stocks of Scots pine (Pinus sylvestris L.) stands in Turkey vol.73, pp.2, 2016, https://doi.org/10.1007/s13595-016-0546-5