DOI QR코드

DOI QR Code

BERTRAND CURVES AND RAZZABONI SURFACES IN MINKOWSKI 3-SPACE

  • Xu, Chuanyou (School of Mathematics and Computational Science Fuyang Teachers College) ;
  • Cao, Xifang (School of Mathematical Sciences Yangzhou University) ;
  • Zhu, Peng (School of Mathematics and Physics Jiangsu University of Technology)
  • Received : 2013.04.09
  • Published : 2015.03.31

Abstract

In this paper, we generalize some results about Bertrand curves and Razzaboni surfaces in Euclidean 3-space to the case that the ambient space is Minkowski 3-space. Our discussion is divided into three different cases, i.e., the parent Bertrand curve being timelike, spacelike with timelike principal normal, and spacelike with spacelike principal normal. For each case, first we show that Razzaboni surfaces and their mates are related by a reciprocal transformation; then we give B$\ddot{a}$cklund transformations for Bertrand curves and for Razzaboni surfaces; finally we prove that the reciprocal and B$\ddot{a}$cklund transformations on Razzaboni surfaces commute.

Keywords

References

  1. H. Balgetir, M. Bektas, and M. Ergot, Bertrand curves for nonnull curves in 3- dimensional Lorentzian space, Hadronic J. 27 (2004), no. 2, 229-236.
  2. J. F. Burke, Bertrand curves associated with a pair of curves, Math. Maga. 34 (1960), no. 1, 60-62. https://doi.org/10.2307/2687860
  3. N. Ekmekci and K. Ilarslan, On Bertrand curves and their characterization, Differ. Geom. Dyn. Syst. 3 (2001), no. 2, 17-24.
  4. S. Izumiya and N. Takeuchi, Generic properties of helices and Bertrand curves, J. Geom. 74 (2002), no. 1-2, 97-109. https://doi.org/10.1007/PL00012543
  5. S. Izumiya and A. Takiyama, A time-like surface in Minkowski 33-space which contains pseudocircles, Proc. Edinburgh Math. Soc. (2) 40 (1997), no. 1, 127-136. https://doi.org/10.1017/S001309150002349X
  6. M. Kulahci and M. Ergut, Bertrand curves of AW(k)-type in Lorentzian space, Nonlinear Anal. 70 (2009), no. 4, 1725-1731. https://doi.org/10.1016/j.na.2008.02.055
  7. R. Lopez, Differential geometry of curves and surfaces in Lorent-Minkowski spaces, arXiv:0810.3351vl[math.DG]
  8. B. O'Nell, Semi-Riemannian Geometry, Academic Press, 1983.
  9. A. Razzaboni, Un teorema del signor Demartres generalizzato, Ven. Ist. Atti. 60 (1901), 757-768.
  10. A. Razzaboni, Delle superficie nelle quali un sistema di geodetiche sono curve del Bertrand, Boligna Mem. 10 (1903), 539-548.
  11. W. K. Schief, On the integrability of Bertrand curves and Razzaboni surfaces, J. Geom. Phys. 45 (2003), no. 1-2, 130-150. https://doi.org/10.1016/S0393-0440(02)00130-4
  12. M. Yilmaz and M. Bektas, General properties of Bertrand curves in Riemann-Otsuki space, Nonlinear Anal. 69 (2008), no. 10, 3225-3231. https://doi.org/10.1016/j.na.2007.10.003

Cited by

  1. ON TIMELIKE BERTRAND CURVES IN MINKOWSKI 3-SPACE vol.38, pp.3, 2016, https://doi.org/10.5831/HMJ.2016.38.3.467