DOI QR코드

DOI QR Code

Establishment of a Murine Model for Radiation-induced Bone Loss in Growing C3H/HeN Mice

성장기 마우스에서 방사선 유도 골소실 동물모델 확립

  • Jang, Jong-Sik (College of Ecology and Environmental Science, Kyungpook National University) ;
  • Moon, Changjong (College of Veterinary Medicine, Chonnam National University) ;
  • Kim, Jong-Choon (College of Veterinary Medicine, Chonnam National University) ;
  • Bae, Chun-Sik (College of Veterinary Medicine, Chonnam National University) ;
  • Kang, Seong-Soo (College of Veterinary Medicine, Chonnam National University) ;
  • Jung, Uhee (Advanced Radiation Technology Institute) ;
  • Jo, Sung-Kee (Advanced Radiation Technology Institute) ;
  • Kim, Sung-Ho (College of Veterinary Medicine, Chonnam National University)
  • Received : 2014.10.30
  • Accepted : 2015.01.26
  • Published : 2015.03.31

Abstract

Bone changes are common sequela of irradiation in growing animal. The purpose of this study was to establish an experimental model of radiation-induced bone loss in growing mice using micro-computed tomography (${\mu}CT$). The extent of changes following 2 Gy gamma irradiation ($2Gy{\cdot}min^{-1}$) was studied at 4, 8 or 12 weeks after exposure. Mice that received 0.5, 1.0, 2.0 or 4.0 Gy of gamma-rays were examined 8 weeks after irradiation. Tibiae were analyzed using ${\mu}CT$. Serum alkaline phosphatase (ALP) and biomechanical properties were measured and the osteoclast surface was examined. A significant loss of trabecular bone in tibiae was evident 8 weeks after exposure. Measurements performed after irradiation showed a dose-related decrease in trabecular bone volume fraction (BV/TV) and bone mineral density (BMD), respectively. The best-fitting dose-response curves were linear-quadratic. Taking the controls into accounts, the lines of best fit were as follows: BV/TV (%) = $0.9584D^2-6.0168D+20.377$ ($r^2$ = 0.946, D = dose in Gy) and BMD ($mg{\cdot}cm^{-3}$) = $8.8115D^2-56.197D+194.41$ ($r^2$ = 0.999, D = dose in Gy). Body weight did not differ among the groups. No dose-dependent differences were apparent among the groups with regard to mechanical and anatomical properties of tibia, serum ALP and osteoclast activity. The findings provide the basis required for better understanding of the results that will be obtained in any further studies of radiation-induced bone responses.

성장기 동물에서 방사선 노출은 뼈의 변화를 일으킨다. 본 연구에서는 성장기 동물에서 방사선 유도 골소실 연구를 위한 동물모델을 확립하고자하였다. 성장기(4주령) 마우스에 방사선 노출(2 Gy) 후 시간경과(4, 8 및 12주)에 따른 경골 해면뼈 및 치밀뼈의 변화를 관찰하고, 방사선 비노출군과의 차이가 확연한 방사선 노출 후 8주에 방사선(0.5, 1.0, 2.0 및 4.0 Gy)을 조사하고 조사선량에 따른 변화를 관찰하였다. 동물의 희생 전 악력을 측정하였으며, 경골의 해면뼈 및 치밀뼈를 미세단층촬영 분석하였고, 해면뼈에서 뼈파괴세포의 활성도를 관찰하였다. 혈청내 alkaline phosphatase(ALP) 농도 및 경골의 물리적 강도를 측정하였다. 해면뼈의 확연한 차이는 8주에 관찰되었으며, 조사선량증가에 비례하여 해면뼈량(trabecular bone volume, BV/TV) 및 골밀도(bone mineral density, BMD)의 감소가 관찰되었다. 방사선조사선량에 따른 변화를 나타내는 이차방정식은 BV/TV (%) = $0.9584D^2-6.0168D+20.377$ ($r^2$ = 0.946, D = 방사선조사선량, Gy), $BMD(mg{\cdot}cm^{-3})=8.8115D^2-56.197D+194.41$ ($r^2$ = 0.999, D = 방사선조사선량, Gy) 였다. 뼈의 물리적 강도, 길이 및 무게의 변화는 없었으며, 혈청ALP 농도 및 뼈파괴세포 활성도도 차이가 없었다. 본 연구의 결과는 성장기 동물에서 방사선에 의한 뼈손상 연구에 동물모델 기초자료가 될 수 있을 것이다.

Keywords

References

  1. Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, Friedman DL, Marina N, Hobbie W, Kadan-Lottick NS, Schwartz CL, Leisenring W, Robison LL. Chronic health conditions in adult survivors of childhood cancer. New Engl J Med. 2006;355:1572-1582. https://doi.org/10.1056/NEJMsa060185
  2. Zhao W, Robbins ME. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem. 2009;16:130-143. https://doi.org/10.2174/092986709787002790
  3. Ergün H, Howland WJ. Postradiation atrophy of mature bone. CRC Crit Rev Diagn. Imaging. 1980;12:225-243.
  4. Chen HH, Lee BF, Guo HR, Su WR, Chiu NT. Changes in bone mineral density of lumbar spine after pelvic radiotherapy. Radiother Oncol. 2002;62:239-242. https://doi.org/10.1016/S0167-8140(02)00002-6
  5. Merchant TE, Kushner BH, Sheldon JM, LaQuaglia M, Healey JH. Effect of low-dose radiation therapy when combined with surgical resection for Ewing sarcoma. Med Pediatr Oncol. 1999;33:65-70. https://doi.org/10.1002/(SICI)1096-911X(199908)33:2<65::AID-MPO1>3.0.CO;2-L
  6. Koscielniak E, Morgan M, Treuner J. Soft tissue sarcoma in children: prognosis and management. Paediatr. Drugs. 2002;4:21-28. https://doi.org/10.2165/00128072-200204010-00003
  7. Wall JE, Kaste SC, Greenwald CA, Jenkins JJ, Douglass EC, Pratt CB. Fractures in children treated with radiotherapy for soft tissue sarcoma. Orthopedics. 1996;19:657-664.
  8. Damron TA, Margulies B, Strauss J, Spadaro J, Farnum CE. Sequential histomorphometric changes following irradiation of the growth plate with and without radioprotectant. J Bone Joint Surg Am. 2003;85:1302-1313. https://doi.org/10.2106/00004623-200307000-00017
  9. Margulies B, Morgan H, Allen M, Strauss J, Spadaro J, Damron T. Increased bone density following irradiation and the radioprotectant drug amifostine in a rat model. Am J Clin Oncol. 2003;26:e106-e114.
  10. Tabone MD, Leverger G. Outcome of children cured of acute lymphoblastic leukemia. Bull Acad Natl Med. 2009;193:1519-1528.
  11. Alves CH, Kuperman H, Dichtchekenian V, Damiani D, Della Manna T, Cristófani LM, Odone Filho V, Setian N. Growth and puberty after treatment for acute lymphoblastic leukemia. Rev Hosp Clin Fac. Med. Sao. Paulo. 2004;59:67-70. https://doi.org/10.1590/S0041-87812004000200004
  12. Mayo-Smith W, Rosenthal DI. Radiographic appearance of osteopenia. Radiol Clin N Am. 1991;29:37-47.
  13. Blake GM, Fogelman I. Bone densitometry and the diagnosis of osteoporosis. Semin Nucl Med. 2001;31:69-81. https://doi.org/10.1053/snuc.2001.18749
  14. Eastell R, Hannon RA. Biomarkers of bone health and osteoporosis risk. Proc Nutr Soc. 2008;67:157-162. https://doi.org/10.1017/S002966510800699X
  15. Kim SJ, Kim KW, Lee JH. A study on the trabecular change of femur according to $17\beta$-estradiol dosage in ovariectomized rat. J Korean Assoc Maxillofac Plast Reconstr Surg. 2000;22:155-163.
  16. Guldberg RE, Lin AS, Coleman R, Robertson G, Duvall C. Microcomputed tomography imaging of skeletal development and growth. Birth Defects Res C Embryo Today. 2004;72:250-259. https://doi.org/10.1002/bdrc.20016
  17. Lee JH, Lee HJ, Yang M, Moon C, Kim JC, Jo SK, Jang JS, Kim SH. Establishment of a murine model for radiation-induced bone loss using micro-computed tomography in adult C3H/HeN mice. Lab Anim Res. 2013;29:55-62. https://doi.org/10.5625/lar.2013.29.1.55
  18. Kopp HG, Hooper AT, Shmelkov SV, Rafii S. Beta-galactosidase staining on bone marrow. The osteoclast pitfall. Histol Histopathol. 2007;22:971-976.
  19. Beamer WG, Donahue LR, Rosen CJ, Baylink DJ. Genetic variability in adult bone density among inbred strains of mice. Bone. 1996;18:397-403. https://doi.org/10.1016/8756-3282(96)00047-6
  20. Bower AL, Lang DH, Vogler GP, Vandenbergh DJ, Blizard DA, Stout JT, McClearn GE, Sharkey NA. QTL analysis of trabecular bone in BXD F2 and RI mice. J Bone Miner Res. 2006;21:1267-1275. https://doi.org/10.1359/jbmr.060501
  21. Bandstra ER, Pecaut MJ, Anderson ER, Willey JS, De Carlo F, Stock SR, Gridley DS, Nelson GA, Levine HG, Bateman TA. Long-term dose response of trabecular bone in mice to proton radiation. Radiat Res. 2008;169:607-614. https://doi.org/10.1667/RR1310.1
  22. Willey JS, Lloyd SA, Robbins ME, Bourland JD, Smith-Sielicki H, Bowman LC, Norrdin RW, Bateman TA. Early increase in osteoclast number in mice after whole-body irradiation with 2 Gy X rays. Radiat Res. 2008;170:388-392. https://doi.org/10.1667/RR1388.1
  23. Willey JS, Lloyd SA, Nelson GA, Bateman TA. Ionizing Radiation and Bone Loss: Space Exploration and Clinical Therapy Applications. Clin Rev Bone Miner Metab. 2011;9:54-62. https://doi.org/10.1007/s12018-011-9092-8
  24. Bhattacharya A, Watts NB, Davis K, Kotowski S, Shukla R, Dwivedi AK, Coleman R. Dynamic bone quality: a noninvasive measure of bone's biomechanical property in osteoporosis. J Clin Densitom. 2010;13:228-236. https://doi.org/10.1016/j.jocd.2010.01.001