DOI QR코드

DOI QR Code

Effect of Oxygen Flux on FTO Thin Films Using DC and RF Sputtering

  • Received : 2015.03.20
  • Accepted : 2015.03.30
  • Published : 2015.03.30

Abstract

Transparent conductive oxides (TCOs) are essential material in optoelectronics such as solar cells, touch screens and light emitting diodes. Particularly TCOs are attractive material for infrared cut off film due to their high transparency in the visible wavelength range and high infrared reflectivity. Among the TCO, Indium tin oxide has been widely used because of the high electrical conductivity and transparency in the visible wavelength region. But ITO has several limitations; expensive and low environmental stability. On the other hands, fluorine doped tin oxide (FTO) is well known for low cost, weather ability and stable in acidic and hydrogen. In this study, two different magnetron sputtering techniques with RF and DC modes at room temperature deposition of FTO thin film was conducted. The change of oxygen content is influence on the topography, transmittance and refractive index.

Keywords

References

  1. Y. Okuhara, T. Kato, H. Matsubara, N. Isu, M. Takata, Thin solid films, 519, 2280 (2011). https://doi.org/10.1016/j.tsf.2010.11.007
  2. E. Fortunato, D. Ginley, H. Hosono, D. C. Paine, MRS Bull, 32, 242 (2007). https://doi.org/10.1557/mrs2007.29
  3. B. Zhang, Y. Tian, J. Zhang, W. Cai, Optoelectronics and advanced materials-rapid communications, 4, 1158 (2011).
  4. Z. M. Jarzebski, J. P. Marton, J. Electrochem. Soc, 123, 199C, (1976). https://doi.org/10.1149/1.2133010
  5. K. S. Ramaih, V. S. Raja, Appl. Sur. Sci., 253, 1451 (2006). https://doi.org/10.1016/j.apsusc.2006.02.019
  6. H. Kim, R.C.Y. Auyeung, A. Pique, Thin solid films, 516, 5052 (2008). https://doi.org/10.1016/j.tsf.2007.11.079
  7. B. H. Liao, C. C. Kuo, P. J. Chen, C. C. Lee, Appl. Opt., 50, C160 (2011).
  8. J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, Phys. Rev. B, 68, 155410 (2003). https://doi.org/10.1103/PhysRevB.68.155410
  9. H.C. Lee, J.Y. Seo, Y.W. Choi, D.W. Lee, Vacuum, 72, 269 (2004).
  10. M. Quaas, H. Steffen, R. Hippler, H. Wulff, Surf. Sci., 540, 337 (2003). https://doi.org/10.1016/S0039-6028(03)00850-1
  11. P. F. Carcia, R. S. McLean, M. H. Reilly, Z. G. Li, L. J. Pillione, R. F. Messier, Appl. Phys. Lett. 81, 1800 (2002). https://doi.org/10.1063/1.1504874
  12. J. C. Hsu, U. S. Chiang, ISRN Materials science, 2013, 710798 (2013).
  13. S. H. Huang, P.H. Cheng, Y. Y. Chen, Chin. Phys. B, 22, 027701 (2013). https://doi.org/10.1088/1674-1056/22/2/027701
  14. Y. C. Liang, Appl. Phys A, 97, 249 (2009).
  15. H. N. Cui, V. Teixeira, L. J. Meng, R. Martins, E. Fortunato, Vacuum, 82, 1507 (2008). https://doi.org/10.1016/j.vacuum.2008.03.061
  16. H. N. Cui, V. Teixeira, A. Monteiro, Vacuum, 67, 589 (2002). https://doi.org/10.1016/S0042-207X(02)00236-1
  17. Q. H. Li, D. Zhu, W. Liu, Y. Liu, X. C. Ma, Appl. Surf. Sci., 254, 2922 (2008). https://doi.org/10.1016/j.apsusc.2007.09.104
  18. W. F. Wu, W. S. Chiou, Thin solid films, 298, 221 (1998).

Cited by

  1. Fabrication of transparent conductive tri-composite film for electrochromic application vol.425, 2017, https://doi.org/10.1016/j.apsusc.2017.07.076