DOI QR코드

DOI QR Code

Recent advances in utilization of photochemical internalization (PCI) for efficient nano carrier mediated drug delivery

  • Park, Wooram (Center for Photomedicine, Department of Biotechnology, The Catholic University of Korea) ;
  • Park, Sin-Jung (Center for Photomedicine, Department of Biotechnology, The Catholic University of Korea) ;
  • Lee, Jun (Gyeonggi-Academy of Foreign Languages) ;
  • Na, Kun (Center for Photomedicine, Department of Biotechnology, The Catholic University of Korea)
  • Received : 2015.01.23
  • Accepted : 2015.02.02
  • Published : 2015.03.25

Abstract

Despite recent progresses in nanoparticle-based drug delivery systems, there are still many unsolved limitations. Most of all, a major obstacle in current nanoparticle-based drug carrier is the lack of sufficient drug delivery into target cells due to various biological barriers, such as: extracellular matrix, endolysosomal barrier, and drug-resistance associated proteins. To circumvent these limitations, several research groups have utilized photochemical internalization (PCI), an extension of photodynamic therapy (PDT), in design of innovative and efficient nano-carriers drug delivery. This review presents an overview of a recent research on utilization of PCI in various fields including: anti-cancer therapy, protein delivery, and tissue engineering.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Bangham, A.D., Standish, M.M. and Watkins, J.C. (1965), "Diffusion of univalent ions across the lamellae of swollen phospholipids", J. Mol. Biol., 13(1), 238-252. https://doi.org/10.1016/S0022-2836(65)80093-6
  2. Bansal, T., Akhtar, N., Jaggi, M., Khar, R.K. and Talegaonkar, S. (2009), "Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation", Drug Discov. Today, 14(21-22), 1067-1074. https://doi.org/10.1016/j.drudis.2009.07.010
  3. Berg, K., Selbo, P.K., Prasmickaite, L., Tjelle, T.E., Sandvig, K., Moan, J., Gaudernack, G., Fodstad, O., Kjolsrud, S., Anholt, H., Rodal, G.H., Rodal, S.K. and Hogset, A. (1999), "Photochemical internalization: a novel technology for delivery of macromolecules into cytosol", Cancer Res., 59(6), 1180-1183.
  4. Cordon-Cardo, C., O'Brien, J.P., Casals, D., Rittman-Grauer, L., Biedler, J.L., Melamed, M.R. and Bertino, J.R. (1989), "Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites", Proc. Natl. Acad. Sci. USA., 86(2), 695- 698. https://doi.org/10.1073/pnas.86.2.695
  5. Dachs, G.U., Dougherty, G.J., Stratford, I.J. and Chaplin, D.J. (1996), "Targeting gene therapy to cancer: a review", Oncol. Res., 9(6-7), 313-325.
  6. Davis, M.E. (2002), "Non-viral gene delivery systems", Curr. Opin. Biotechnol., 13(2), 128-131. https://doi.org/10.1016/S0958-1669(02)00294-X
  7. Evans, C. and Robbins, P.D. (1995), "Current concepts review: possible orthopaedic applications of gene therapy", J. Bone Joint Surg. Am., 77(7), 1103-1115. https://doi.org/10.2106/00004623-199507000-00021
  8. Farokhzad, O.C. and Langer, R. (2009), "Impact of nanotechnology on drug delivery", ACS Nano, 3(1), 16-20. https://doi.org/10.1021/nn900002m
  9. Funhoff, A.M., van Nostrum, C.F., Koning, G.A., Schuurmans-Nieuwenbroek, N.M., Crommelin, D.J. and Hennink, W.E. (2004), "Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH", Biomacromolecules, 5(1), 32-39. https://doi.org/10.1021/bm034041+
  10. Gillmeister, M.P., Betenbaugh, M.J. and Fishman, P.S. (2011), "Cellular trafficking and photochemical internalization of cell penetrating peptide linked cargo proteins: a dual fluorescent labeling study", Bioconjug. Chem., 22(4), 556-566. https://doi.org/10.1021/bc900445g
  11. Godbey, W.T., Wu, K.K. and Mikos, A.G. (1999), "Poly (ethylenimine) and its role in gene delivery", J. Control. Release., 60(2), 149-160. https://doi.org/10.1016/S0168-3659(99)00090-5
  12. Green, J.J., Zhou, B.Y., Mitalipova, M.M., Beard, C., Langer, R., Jaenisch, R. and Anderson, D.G. (2008), "Nanoparticles for gene transfer to human embryonic stem cell colonies", Nano Lett., 8(10), 3126-3130. https://doi.org/10.1021/nl8012665
  13. Gruenberg, J. and Van der Goot, F.G. (2006), "Mechanisms of pathogen entry through the endosomal compartments", Nat. Rev. Mol. Cell. Bio., 7(7), 495-504. https://doi.org/10.1038/nrm1959
  14. Hogset, A., Prasmickaite, L., Selbo, P.K., Hellum, M., Engesaeter, B.O., Bonsted, A. and Berg, K. (2004), "Photochemical internalisation in drug and gene delivery", Adv. Drug Deliv. Rev., 56(1), 95-115. https://doi.org/10.1016/j.addr.2003.08.016
  15. Hogset, A., Prasmickaite, L., Tjelle, T.E. and Berg, K. (2000), "Photochemical transfection: a new technology for light-induced, site-directed gene delivery", Hum. Gene Ther., 11(6), 869-880. https://doi.org/10.1089/10430340050015482
  16. He, Q., Gao, Y., Zhang, L., Zhang, Z., Gao, F., Ji, X., Li, Y. and Shi, J. (2011), "A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance", Biomater., 32(30), 7711-7720. https://doi.org/10.1016/j.biomaterials.2011.06.066
  17. Johannes, L. and Decaudin, D. (2005), "Protein toxins: intracellular trafficking for targeted therapy", Gene Ther., 12(18), 1360-1368. https://doi.org/10.1038/sj.gt.3302557
  18. Kang, H.C. and Bae, Y.H. (2007), "pH-Tunable endosomolytic oligomers for enhanced nucleic acid delivery", Adv. Func. Mater., 17(8), 1263-1272. https://doi.org/10.1002/adfm.200601188
  19. Kievit, F.M. and Zhang, M. (2011), "Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers", Adv. Mater., 23(36), H217-H247. https://doi.org/10.1002/adma.201102313
  20. Kwoh, D.Y., Coffin, C.C., Lollo, C.P., Jovenal, J., Banaszczyk, M.G., Mullen, P., Phillips, A., Amini, A., Fabrycki, J., Bartholomew, R.M., Brostoff, S.W. and Cario, D.J. (1999), "Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver", Biochim. Biophys. Acta., 1444(2), 171-190. https://doi.org/10.1016/S0167-4781(98)00274-7
  21. Lage, H. (2008), "An overview of cancer multidrug resistance: a still unsolved problem", Cell. Mol. Life Sci., 65(20), 3145-3167. https://doi.org/10.1007/s00018-008-8111-5
  22. Lee, C.S. and Na, K. (2014), "Photochemically triggered cytosolic drug delivery using pH-responsive hyaluronic acid nanoparticles for light-induced cancer therapy", Biomacromolecules, 15(11), 4228-4238. https://doi.org/10.1021/bm501258s
  23. Lemkine, G.F. and Demeneix, B. (2001), "Polyethylenimines for in vivo gene delivery", Curr. Opin. Mol. Ther., 3(2), 178-182.
  24. Ling, V. (1992), "P-glycoprotein and resistance to anticancer drugs", Cancer, 69(10), 2603-2609. https://doi.org/10.1002/1097-0142(19920515)69:10<2603::AID-CNCR2820691034>3.0.CO;2-E
  25. Madeira, C., Mendes, R.D., Ribeiro, S.C., Boura, J.S., Aires-Barros, M.R., da Silva, C.L. and Cabral, J.M. (2010), "Nonviral gene delivery to mesenchymal stem cells using cationic liposomes for gene and cell therapy", J. Biomed. Biotechnol., 2010, 12, DOI: 10.1155/2010/735349.
  26. Marklein, R.A. and Burdick, J.A. (2010), "Controlling stem cell fate with material design", Adv. Mater., 22(2), 175-189. https://doi.org/10.1002/adma.200901055
  27. Meng, H., Liong, M., Xia, T., Li, Z., Ji, Z., Zink, J.I. and Nel, A.E. (2010), "Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line", ACS Nano, 4(8), 4539-4550. https://doi.org/10.1021/nn100690m
  28. MuEller, R.H., MaEder, K. and Gohla, S. (2000), "Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art", Eur. J. Pharm. Biopharm., 50(1), 161-177. https://doi.org/10.1016/S0939-6411(00)00087-4
  29. Nishiyama, N., Iriyama, A., Jang, W.D., Miyata, K., Itaka, K., Inoue, Y., Takahashi, H., Yanagi, Y., Tamaki, Y., Koyama, H. and Kataoka, K. (2005), "Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer", Nat. Mater., 4(12), 934-941. https://doi.org/10.1038/nmat1524
  30. Nishiyama, N., Arnida, Jang, W.D., Date, K., Miyata, K. and Kataoka, K. (2006), "Photochemical enhancement of transgene expression by polymeric micelles incorporating plasmid DNA and dendrimer-based photosensitizer", J. Drug Target., 14(6), 413-424. https://doi.org/10.1080/10611860600834508
  31. Otani, K., Yamahara, K., Ohnishi, S., Obata, H., Kitamura, S. and Nagaya, N. (2009), "Nonviral delivery of siRNA into mesenchymal stem cells by a combination of ultrasound and microbubbles", J. Control. Release, 133(2), 146-153. https://doi.org/10.1016/j.jconrel.2008.09.088
  32. Park, H., Park, W. and Na, K. (2014), "Doxorubicin loaded singlet-oxygen producible polymeric micelle based on chlorine e6 conjugated pluronic F127 for overcoming drug resistance in cancer", Biomater., 35(27), 7963-7969. https://doi.org/10.1016/j.biomaterials.2014.05.063
  33. Park, J.S., Yang, H.N., Woo, D.G., Jeon, S.Y., Do, H.J., Lim, H.Y., Kim, J.H. and Park, K.H., (2011), "Chondrogenesis of human mesenchymal stem cells mediated by the combination of SOX trio SOX5, 6, and 9 genes complexed with PEI-modified PLGA nanoparticles", Biomater., 32(14), 3679-3688. https://doi.org/10.1016/j.biomaterials.2011.01.063
  34. Park, S. and Na, K. (2012), "The transfection efficiency of photosensitizer-induced gene delivery to human MSCs and internalization rates of EGFP and Runx2 genes", Biomater., 33(27), 6485-6494. https://doi.org/10.1016/j.biomaterials.2012.05.040
  35. Park, S. Park, W. and Na, K. (2013), "Photo-activatable ternary complex based on a multifunctional shielding material for targeted shRNA delivery in cancer treatment", Biomater., 34(35), 8991-8999. https://doi.org/10.1016/j.biomaterials.2013.08.012
  36. Park, W. and Na, K. (2015), Advances in the synthesis and application of nanoparticles for drug delivery, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
  37. Park, W., Yang, H.N., Ling, D., Yim, H., Kim, K.S., Hyeon, T., Na, K. and Park, K.H. (2014), "Multi-modal transfection agent based on monodisperse magnetic nanoparticles for stem cell gene delivery and tracking", Biomater., 35(25), 7239-7247. https://doi.org/10.1016/j.biomaterials.2014.05.010
  38. Pastan, I., Hassan, R., Fitzgerald, D.J. and Kreitman, R.J. (2006), "Immunotoxin therapy of cancer", Nat. Rev. Cancer, 6(7), 559-565. https://doi.org/10.1038/nrc1891
  39. Probst, C.E., Zrazhevskiy, P., Bagalkot, V. and Gao, X. (2013), "Quantum dots as a platform for nanoparticle drug delivery vehicle design", Adv. Drug Deliv. Rev., 65(5), 703-718. https://doi.org/10.1016/j.addr.2012.09.036
  40. Robey, R.W., To, K.K., Polqar, O., Dohse, M., Fetsch, P., Dean, M. and Bates, S.E. (2009), "ABCG2: a perspective", Adv. Drug Deliv. Rev., 61(1), 3-13. https://doi.org/10.1016/j.addr.2008.11.003
  41. Rossi, F. and Cattaneo, E. (2002), "Neural stem cell therapy for neurological diseases: dreams and reality", Nat. Rev. Neurosci., 3(5), 401-409. https://doi.org/10.1038/nrn809
  42. Segers, V.F. and Lee, R.T. (2008), "Stem-cell therapy for cardiac disease", Nature, 451(7181), 937-942. https://doi.org/10.1038/nature06800
  43. Selbo, P.K., Weyergang, A., Eng, M.S., Bostad, M., Maelandsmo, G.M., Hogset, A. and Berg, K. (2012), "Strongly amphiphilic photosensitizers are not substrates of the cancer stem cell marker ABCG2 and provides specific and efficient light-triggered drug delivery of an EGFR-targeted cytotoxic drug", J. Control. Release, 159(2), 197-203. https://doi.org/10.1016/j.jconrel.2012.02.003
  44. Selbo, P.K., Weyergang, A., Hogset, A., Norum, O.J., Berstad, M.B., Vikdal, M. and Berg, K. (2010), "Photochemical internalization provides time-and space-controlled endolysosomal escape of therapeutic molecules", J. Control. Release, 148(1), 2-12. https://doi.org/10.1016/j.jconrel.2010.06.008
  45. Varkouhi, A.K., Scholte, M., Storm, G. and Haisma, H.J. (2011), "Endosomal escape pathways for delivery of biologicals", J. Control. Release, 151(3), 220-228. https://doi.org/10.1016/j.jconrel.2010.11.004
  46. Wagner, V., Dullaart, A., Bock, A.K. and Zweck, A. (2006), "The emerging nanomedicine landscape", Nat. Biotechnol., 24(10), 1211-1218. https://doi.org/10.1038/nbt1006-1211
  47. Whitehead, K.A., Langer, R. and Anderson, D.G. (2009), "Knocking down barriers: advances in siRNA delivery", Nat. Rev. Drug Discov., 8(2), 129-138. https://doi.org/10.1038/nrd2742
  48. Yen, H.C., Cabral, H., Mi, P., Toh, K., Matsumoto, Y., Liu, X., Koori, H., Kim, A., Miyazaki, K., Miura, Y., Nishiyama, N. and Kataoka, K. (2014), "Light-induced cytosolic activation of reduction-sensitive camptothecin-loaded polymeric micelles for spatiotemporally controlled in Vivo chemotherapy", ACS nano, 8(11), 11591-11602. https://doi.org/10.1021/nn504836s
  49. Yip, W.L., Weyergang, A., Berg, K., Tonnesen, H.H. and Selbo, P.K. (2007), "Targeted delivery and enhanced cytotoxicity of cetuximab-saporin by photochemical internalization in EGFR-positive cancer cells", Mol. Pharm., 4(2), 241-251. https://doi.org/10.1021/mp060105u
  50. Zhang, L., Gu, F.X., Chan, J.M., Wang, A.Z., Langer, R.S. and Farokhzad, O.C. (2007), "Nanoparticles in medicine: therapeutic applications and developments", Clin. Pharmacol. Ther., 83(5), 761-769.
  51. Zhang, X. and Godbey, W.T. (2006), "Viral vectors for gene delivery in tissue engineering", Adv. Drug Deliv. Rev., 58(4), 515-534. https://doi.org/10.1016/j.addr.2006.03.006
  52. Hui, Z., He, Z.G., Zheng, L., Li, G.Y., Shen, S.R. and Li, X.L. (2007), "Studies on polyamidoamine dendrimers as efficient gene delivery vector", J. Biomater. Appl., 22(6), 527-544. https://doi.org/10.1177/0885328207080005
  53. Zhou, W. and Freed, C.R. (2009), "Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells", Stem cells, 27(11), 2667-2674. https://doi.org/10.1002/stem.201