References
- Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., Boldrick. J.C., Sabet, H. et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403, 503-511. https://doi.org/10.1038/35000501
- Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W. et al. (2001). Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genetics, 29, 365-371. https://doi.org/10.1038/ng1201-365
- Chen, Q. R., Song, Y. K., Wei, J. S., Bilke, S., Asgharzadeh, S., Seeger, R. and Khan, J. (2008). An integrated cross-platform prognosis study on neuroblastoma patients. Genomics, 92, 195-203. https://doi.org/10.1016/j.ygeno.2008.05.014
- Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297.
- Diaz-Uriarte R. and Alvarez de Andres S. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 3. https://doi.org/10.1186/1471-2105-7-3
- Dudoit, S., Fridlyand, J. and Speed, TP. (2002). Comparison of discriminant methods for the classification of tumors using gene expression data. Journal of American Statistical Association, 97, 77-87. https://doi.org/10.1198/016214502753479248
- Fix, E. and Hodges, J. L. (1951). Discriminatory analysis, nonparametric discrimination: Consistency properties,Technical Report 4, USAF School of Aviation Medicine, Randolph Field, Texas.
- Kuo, W. P., Jenssen, T. K., Butte, A. J., Ohno-Machado, L. and Kohane, I. S. (2002). Analysis of matched mRNA measurements from two different microarray technologies. Bioinformatics, 18, 405-412. https://doi.org/10.1093/bioinformatics/18.3.405
- Kuner, R. Muley, T. Meister, M. Ruschhaupt, M. Buness, A. Xu, E., Schnabel, P., Warth, A. et al. (2009). Global gene expression analysis reveals specific patterns of cell junctions in non-small cell lung cancer subtypes. Lung Cancer, 63, 32-38. https://doi.org/10.1016/j.lungcan.2008.03.033
- Larsen, M., Thomassen, M., Tan, Q., Srensen, K. and Kruse, T. (2014). Microarray-based RNA profiling of breast cancer: Batch effect removal improves cross-platform consistency. BioMed Research International, Article ID 651751.
- Lee, S. (2008). Mistakes in validating the accuracy of a prediction classifier in high-dimensional but small-sample microarray data. Statistical Methods in Medical Research, 17, 635-642. https://doi.org/10.1177/0962280207084839
- Liu, H., Hussain F., Tan C.L. and Dash, M. (2002). Discretization: An enabling technique. Data Mining and Knowledge Discovery, 6, 393-423. https://doi.org/10.1023/A:1016304305535
- Liu, H., Chen, C., Liu, Y., Chu, C., Liang, D., Shih, L. and Lin, C. (2008). Cross-generation and cross-laboratory predictions of Affymetrix microarrays by rank-based methods. Journal of Biomedical Informatics, 41, 570-579. https://doi.org/10.1016/j.jbi.2007.11.005
- Liu, H., Peng, P. C., Hsieh, T. C., Yeh, T., Lin, C., Chen, C. Hou, J., Shih, L. et al . (2014). Comparison of feature selection methods for cross laboratory microarray analysis. BMC Bioinformatics, 15, 274. https://doi.org/10.1186/1471-2105-15-274
- Maglott, D., Ostell, J., Pruitt, K.D. and Tatusova, T. (2005). Entrez Gene: gene-centered information at NCBI. Nucleic Acids Research, 33, D54-58. https://doi.org/10.1093/nar/gni052
- Newnham, G., Conron, M., McLachlan, S., Dobrovic, A., Do, H., Li, J., Opeskin, K., Thompson, N. et al. (2011). Integrated mutation, copy number and expression profiling in resectable non-small cell lung cancer. BMC Cancer, 7, 11-93.
- Nilsson, B., Andersson, A., Johansson, M. and Fioretos, T. (2006). Cross-platform classification in microarray-based leukemia diagnostics. Haematologica, 91, 821-824.
- Parry, R. M., Jones, W., Stokes, T. H., Phan, J. H., Moffitt, R. A., Fang, H., Shi, L., Oberthuer, A. et al. (2010). k-nearest neighbor models for microarray gene expression analysis and clinical outcome prediction. Pharmacogenomics Journal, 10, 292-309 https://doi.org/10.1038/tpj.2010.56
- Shi L., Campbell, G., Jones, W. D., Campagne, F., Wen, Z., Walker, S. J., Su, Z., Chu, T. et al. (2010). The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature Biotechnology, 28, 827-838 https://doi.org/10.1038/nbt.1665
- Shi, L., Reid, L., Jones, W., Shippy, R., Warrington, Baker, S., Collins, P., Francoise de Longueville. et al. (2006). The microarray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nature Biotechnology, 24, 1151-1161. https://doi.org/10.1038/nbt1239
- Warnat, P., Eils, R. and Brors, B. (2005). Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes. BMC Bioinformatics, 6, 265. https://doi.org/10.1186/1471-2105-6-265
- Williams, PM. Li, R., Johnson, NA., Wright, G., Heath, JD. and Gascoyne, RD. (2010). A novel method of amplification of FFPET-derived RNA enables accurate disease classification with microarrays. Journal of Molecular Diagnosis, 5, 680-686