Abstract
Inverse problem in electrical impedance tomography (EIT) is highly ill-posed therefore prior information is used to mitigate the ill-posedness. Regularization methods are often adopted in solving EIT inverse problem to have satisfactory reconstruction performance. In solving the EIT inverse problem, iterative Gauss-Newton method is generally used due to its accuracy and fast convergence. However, its performance is still suboptimal and mainly depends on the selection of regularization parameter. Although, there are few methods available to determine the regularization parameter such as L-curve method they are sometimes not applicable for all cases. Moreover, regularization parameter is a scalar and it is fixed during iteration process. Therefore, in this paper, a novel method is used to determine the regularization parameter to improve reconstruction performance. Conductivity norm is calculated at each iteration step and it used to obtain the regularization parameter which is a diagonal matrix in this case. The proposed method is applied to human thorax imaging and the reconstruction performance is compared with traditional methods. From numerical results, improved performance of proposed method is seen as compared to conventional methods.
전기 임피던스 단층촬영법(EIT)에서 역문제는 매우 높은 비정치성이므로 이것을 완화시키기 위해서 사전정보가 사용되고 EIT 역문제를 푸는 과정에서 만족스러운 복원성능을 갖기 위해 조정 기법은 적용된다. 반복적 Gauss-Newton 방법은 정확성과 빠른 수렴속도로 인해서 일반적으로 역문제를 푸는데 사용되지만 항상 좋은 성능을 내는 것은 아니며 조정 인자 선택에 따라 성능이 좌지우지된다. 비록 L-곡선과 같이 조정 인자를 결정하는데 이용할 수 있는 여러 가지 방법들이 존재하지만 이러한 방법들이 모든 경우에 적용할 수 있는 것은 아니다. 게다가 조정 인자는 스칼라이고 반복 연산동안 변하지 않는다. 그러므로 이 논문에서는 복원 성능을 향상시키기 위해서 조정 인자를 결정해주는 새로운 방법을 사용하였다. 각각의 반복 연산과정에서 도전율의 norm을 구하고 이것을 대각 행렬형태인 조정 인자를 구하는데 사용한다. 제안한 방법을 인체 흉부 영상 복원에 적용하였고, 기존의 방법들과 복원 성능을 비교하였다. 모의실험 결과, 기존의 방법들과 비교해서 개선된 성능을 확인할 수 있었다.