DOI QR코드

DOI QR Code

옥수수 유묘기 잎말림에 따른 한발 내성 평가

Evaluation of Drought Tolerance in Maize Seedling using Leaf Rolling

  • 송기태 (동국대학교 생명과학과) ;
  • 김경희 (동국대학교 생명과학과) ;
  • 김효철 (동국대학교 생명과학과) ;
  • 문준철 (강원대학교 농업생명과학연구원) ;
  • 김재윤 (고려대학교 생명과학대학 생명공학부) ;
  • 백성범 (국립식량과학원 전작과) ;
  • 권영업 (국립식량과학원 전작과) ;
  • 이병무 (동국대학교 생명과학과)
  • 투고 : 2014.11.10
  • 심사 : 2015.01.25
  • 발행 : 2015.03.31

초록

본 연구는 국내 및 해외 유전자원을 이용하여 옥수수 유묘기의 한발 내성 평가를 수행하였다. 1. 약한 한발 환경에서는 장다옥과 청다옥을 제외한 모든 품종에서 2, 3엽의 잎말림 현상을 찾아볼 수 없었다. 장다옥과 청다옥은 첫 번째 잎의 잎말림 현상이 다른 품종에 비해 높게 나타났다. 동남아시아 품종인 DK9955에서도 첫 번째 잎의 잎말림 현상이 나타났으나, 장다옥과 청다옥에 비해 낮은 수준이었다. 2. 심한 한발 환경에서는 대부분의 품종들이 첫 번째 잎에서 3단계 이상의 잎말림 현상을 보였으며, 특히 한국 품종에서 잎말림 현상이 높게 나타났다. 또한, 동남아시아 품종 중 DK9955, Ki3, CML333에서도 첫 번째 잎의 잎말림 현상이 높게 나타났다. 2, 3엽에서는 한국 품종인 광평옥, 다평옥, 장다옥, 청다옥 등이 심한 잎말림을 보였으며, 한발 내성이 약하다고 보고된 Ki3와 B73도 두 번째 잎에서 높은 잎말림 현상이 나타났다. 3. 극심한 한발 환경에서는 모든 품종에서 첫 번째 잎의 잎말림 현상이 높게 나타났다. 대부분의 품종이 세 번째 잎에서는 잎말림 현상이 없었으나, CML247, 다평옥, 장다옥, 청다옥의 경우 3단계 이상의 잎말림이 나타났다. 한발 내성이 강한 것으로 알려져 있는 Ki11과 동남아시아 품종인 LVN10과 LVN99는 극심한 한발 수준에서도 상대적으로 낮은 잎말림 현상이 관찰되었다. 4. 잎말림 회복을 측정한 결과, 2단계 및 3단계의 경우 품종과 엽기에 관계없이 회복 가능하였으나, 4단계 이상의 잎말림 현상이 진행된 경우 회복이 불가하다는 것으로 확인하였다. 5. 종합적으로 토양수분함량 5~7%에서 두 번째와 세 번째 잎의 잎말림 평균이 2.5이하를 보이는 품종들은 유묘기 한발 내성이 강한 것으로 보인다.

The objective of this study was to evaluate the drought tolerance in maize seedling using leaf rolling. Nineteen maize resources, seven Nested Association Mapping parents lines, six Korean commercial cultivars, and six Southeast Asia commercial cultivars, were used to examine drought tolerance. The leaf rolling scores were measured on each leaf in three stress conditions with moderate drought (10%), severe drought (7%), and extreme drought (5%). Generally leaf rolling score of seedlings increased at the lower soil water potentials (5~7%). As a result, drought-tolerant cultivars showed lower leaf rolling score (below 2.5) than the drought sensitive cultivars (above 3.5). Nine varieties, NK4043, CML322, DK9955, NK4300, Ki11, DK8868, CML228, LVN99, and LVN10, have been selected for tolerance to drought stress. These results suggest that the leaf rolling score in maize seedling has been made available to indirect index for drought tolerance.

키워드

참고문헌

  1. Aslam, M. 2011. Assessment of physio-genetic traits for drought tolerance in maize: Methods, Evaluation, Line X Tester, Heterosis, Gene Action. VDM Verlag Dr. Muller.
  2. Bai, L.-P., F.-G. Sui, T.-D. Ge, Z.-H. Sun, Y.-Y. Lu, and G.-S. Zhou. 2006. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere. 16(3) : 326-332. https://doi.org/10.1016/S1002-0160(06)60059-3
  3. Banziger, M., G. O. Edmeades, and D. Beak. 2000. Breeding for drought and nitrogen stress tolerance in maize: From Theory to Practice. CIMMYT.
  4. Barker, T., H. Campos, M. Cooper, D. Dolan, G. Edmeades, J. Habben, J. Schussler, D. Wright, and C. Zinselmeier. 2005. Improving drought tolerance in maize. Plant Breed. Rev. 25 : 173-253.
  5. Batlang, U. 2006. Studies with trizoles to alleviate drought stress in greenhouse-grown maize (Zea mays) seedlings. MS thesis, Virginia Polytechnic Institute and State University.
  6. Bilgin, O., I. Baser, K. Z. Korkut, A. Balkan, and N. Saglam. 2008. The impacts on seedling root growth of water and salinity stress in maize (Zea mays indentata sturt.). Bulgarian J. of Agric. Sci. 14(3) : 313-320.
  7. Bolanos, J. and G. O. Edmeades. 1996. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res. 48(1) : 65-80. https://doi.org/10.1016/0378-4290(96)00036-6
  8. Chen, J., W. Xu, J. Velten, Z. Xin, and J. Stout. 2012. Characterization of maize inbred lines for drought and heat tolerance. J. Soil Water Conserv. 67(5) : 354-364. https://doi.org/10.2489/jswc.67.5.354
  9. El-Mouhamady, A. A. and E. H. El-Seidy. 2014. Molecular markers linked to drought tolerance in maize (Zea Mays L.). Res. J. Agric. & Biol. Sci. 10(1) : 80-86.
  10. Eom, K.-C., S.-H. Park, and S.-Y. Yoo. 2013. Water requirement of maize according to growth stage. Korean J. Soil Sci. Fert. 46(1) : 16-22. https://doi.org/10.7745/KJSSF.2013.46.1.016
  11. Ganal, M. W., G. Durstewitz, A. Polley, A. Berard, E. S. Buckler, A. Charcosset, J. D. Clarke, E.-M. Graner, M. Hansen, J. Joets, M.-C. L. Paslier, M. D. McMullen, P. Montalent, M. Rose, C.-C. Schon, Q. Sun, H. Walter, O. C. Martin, and M. Falque. 2011. A Large maize (Zea mays L.) SNP genotyping array: Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6(12) : e28334. https://doi.org/10.1371/journal.pone.0028334
  12. Grzesiak, M. T., I. Marcinska, F. Janowiak, A. Rzepka, and T. Hura. 2012. Therelationship between seedling growth and grain yield under drought conditions in maize and triticale genotypes. Acta Physiol. Plant. 34 : 1757-1764. https://doi.org/10.1007/s11738-012-0973-3
  13. Herrero, M. P. and R. R. Johnson. 1981. Drought stress and its effects on maize reproductive systems1. Crop Sci. 21(1) : 105-110. https://doi.org/10.2135/cropsci1981.0011183X002100010029x
  14. Hsiao, T. C., J. C. O'Toole, E. B. Yambao, and N. C. Turner. 1984. Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryza Sativa L.). Plant Physiol. 75(2) : 338-341. https://doi.org/10.1104/pp.75.2.338
  15. Humbert, S., S. Subedi, J. Cohn, B. Zeng, Y.-M. Bi, X. Chen, T. Zhu, P. D. McNicholas, and S. J. Rothstein. 2013. Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses. BMC Genomics. 14(1) : 3. https://doi.org/10.1186/1471-2164-14-3
  16. Jones, H. G. 2007. Monitoring plant and soil water status: Established and novel methods revisited and their relevance to studies of drought tolerance. J. Exp. Bot. 58(2) : 119-130. https://doi.org/10.1093/jxb/erl118
  17. Lee, Y.-H., Y.-J. Oh, C.-S. Na, M.-H. Kim, K.-K. Kang, and S.-T. Yoon. 2013. Vulnerablity assessment on spring drought in the field of agriculture. Climate Change Res. 4(4) : 397-407.
  18. Li, L., J. Staden, and A. K. Jager. 1998. Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regul. 25(2) : 81-87. https://doi.org/10.1023/A:1010774725695
  19. Liu, X., X. Li, W. Li, M. Li, and X. Li. 2003. Analysis on difference for drought responses of maize inbred lines at seedling stage. J. Maize Sci. 12(3) : 63-65.
  20. Lopes, M. S., J. L. Araus, P. D. R. V. Heerden, and C. H. Foyer. 2011. Enhancing drought tolerance in C4 crops. J. Exp. Bot. 62(9) : 3135-3153. https://doi.org/10.1093/jxb/err105
  21. Maiti, R. K., L. E. Maiti, S. Maiti, A. M. Maiti, M. Maiti, and H. Maiti. 1996. Genotypic variability in maize cultivars (Zea mays L) for resistance to drought and salinity at the seedling stage. J. Plant Physiol. 148(6) : 741-744. https://doi.org/10.1016/S0176-1617(96)80377-4
  22. McMullen, M. D., S. Kresovich, H. S. Villeda, P. Bradbury, H.Li, Q. Sun, S. Flint-Garcia, J. Thornsberry, C. Acharya, C. Bottoms, P. Brown, C. Browne, M. Eller, K. Guill, C. Harges, D. Kroon, N. Lepak, S. E. Mitchell, B. Peterson, G. Pressoir, S. Romero, M. O. Rosas, S. Salvo, H. Yates, M. Hanson, E. Jones, S. Smith, J. C. Glaubitz, M. Goodman, D. Ware, J. B. Holland, and E. S. Buckler. 2009. Genetic properties of the maize nested association mapping population. Science. 325(5941) : 737-740. https://doi.org/10.1126/science.1174320
  23. Meeks, M., S. C. Murray, S. Hague, and D. Hays. 2013. Measuring maize seedling drought response in search of tolerant germplasm. Agronomy. 3(1) : 135-147. https://doi.org/10.3390/agronomy3010135
  24. NeSmith, D. S. and J. T. Ritchie. 1992. Effects of soil water-deficits during tassel emergence on development and yield component of maize (Zea mays). Field Crops Res. 28(3) : 251-256. https://doi.org/10.1016/0378-4290(92)90044-A
  25. O'Toole, J. C. and R. T. Cruz. 1980. Response of leaf water potential, stomatal resistance, and leaf rolling to water stress. Plant Physiol. 65(3) : 428-432. https://doi.org/10.1104/pp.65.3.428
  26. Praba, M. L., J. E. Cairns, R. C. Babu, and H. R. Lafitte. 2009. Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J. Agron. Crop Sci. 195(1) : 30-46. https://doi.org/10.1111/j.1439-037X.2008.00341.x
  27. Rhoads, F. M. and J. M. Bennett. 1990. Corn. In: B. A. Stewart, D. R. Nielsen (eds.), Irrigation of agricultural crops. ASAE Agronomy Monograph. 30 : 569-596.
  28. Robins, J. S. and C. E. Domingo. 1953. Some Effects of severe soil moisture deficits at specific growth stages in corn. Agron. J. 45(12) : 618. https://doi.org/10.2134/agronj1953.00021962004500120009x
  29. Saglam, A., A. Kadioglu, M. Demiralay, and R. Terzi. 2014. Leaf rolling reduces photosynthetic loss in maize under severe drought. Acta Bot. Croat. 73(2) : 315-323.
  30. Schmidhalter, U., M. Evequoz, K.-H. Camp, and C. Studer. 1998. Sequence of drought response of maize seedlings in drying soil. Physiol. Plantarum. 104(2) : 159-168. https://doi.org/10.1034/j.1399-3054.1998.1040203.x
  31. Seo, Y, K. Park, E. Chang, S. Ryu, J. Park, and K. Kim. 2014. Effect of salicylic acid and abscisic acid on drought stress of waxy corn. Korean J. Crop Sci. 59(1) : 54-58. https://doi.org/10.7740/kjcs.2014.59.1.054
  32. Sharp, R. E., T. C. Hsiao, and W. K. Silk. 1990. Growth of the maize primary root at low water potentials. Plant Physiol. 93(4) : 1337-1346. https://doi.org/10.1104/pp.93.4.1337
  33. Sharp, R. E., W. K. Silk, and T.C. Hsiao. 1988. Growth of the maize primary root at low water potentials. Plant Physiol. 87(1) : 50-57. https://doi.org/10.1104/pp.87.1.50
  34. Siddique, M. R. B., A. Hamid, and M. S. Islam. 2000. Drought stress effects on water relations of wheat. Bot. Bull. Acad. Sin. 41 : 35-39.
  35. Terbea, M. and I. Ciocazanu. 1999. Response of some maize inbred lines seedlings to limited water supply. R. Agric. Res. (12) : 53-58.
  36. Trachsel, S., P. Stamp, and A. Hund. 2010. Effect of high temperatures, drought and aluminum toxicity on root growth of tropical maize (Zea Mays L.) seedlings. Maydica. 55 : 249-60.
  37. Udomprasert, N., J. Kijjanon, K. Chusri-Iam, and A. Machuay. 2005. Effects of water deficit at tasseling on photosynthesis, development, and yield of corn. Kasetsart J. (Nat. Sci.) 39 : 546-551.
  38. Vohra, M., J. Manwar, R. Manmode, S. Padgilwar, and S. Patil. 2014. Bioethanol production: Feedstock and current technologies. J. of Environ. Chem. Eng. 2(1) : 573-584. https://doi.org/10.1016/j.jece.2013.10.013
  39. Voothuluru, P., H. J. Thompson, S. A. Flint-Garcia, and R. E. Sharp. 2013. Genetic variability of oxalate oxidase activity and elongation in water-stressed primary roots of diverse maize and rice lines. Plant Signal. Behav. 8(3): e23454. https://doi.org/10.4161/psb.23454
  40. Xu, J., Y. Yuan, Y. Xu, G. Zhang, X. Guo, F. Wu, and Q. Wang. 2014. Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biology. 14(1) : 83. https://doi.org/10.1186/1471-2229-14-83
  41. Yamaguchi, M. and R. E. Sharp. 2010. Complexity and coordination of root growth at low water potentials: Recent advances from transcriptomic and proteomic analyses. Plant Cell Environ. 33(4) : 590-603. https://doi.org/10.1111/j.1365-3040.2009.02064.x
  42. Yu, J., J. B. Holland, M. D. McMullen, and E. S. Buckler. 2008. Genetic design and statistical power of nested association mapping in maize. Genetics. 178(1) : 539-551. https://doi.org/10.1534/genetics.107.074245
  43. Zamaninejad, M., S. K. Khorasani, M. J. Moeini, and A. R. Heidarian. 2013. Effect of salicylic acid on morphological characteristics, yield and yield components of Corn (Zea mays L.) under drought condition. Euro. J. Exp. Bio. 3(2) : 153-161.
  44. Zhang, L., M. Gao, J. Hu, X. Zhang, K. Wang, and M. Ashraf. 2012. Modulation role of abscisic acid (ABA) on growth, water relations and glycinebetaine metabolism in two maize (Zea Mays L.) cultivars under drought stress. Int. J. Mol. Sci. 13(3) : 3189-3202. https://doi.org/10.3390/ijms13033189
  45. Korea Meteorological Administration. Annual Climatological Report. 2013. http://www.kma.go.kr/repositary/sfc/pdf/sfc_ann_2013.pdf.

피인용 문헌

  1. Research Status for Drought Tolerance in Maize vol.60, pp.4, 2015, https://doi.org/10.7740/kjcs.2015.60.4.401
  2. Identification of Candidate Transcripts Related to Drought Stress using Secondary Traits and qRT-PCR in Tropical Maize (Zea mays L.) vol.64, pp.4, 2019, https://doi.org/10.7740/kjcs.2019.64.4.432
  3. RNA-Seq Analysis of Gene Expression Changes Related to Delay of Flowering Time under Drought Stress in Tropical Maize vol.11, pp.9, 2015, https://doi.org/10.3390/app11094273
  4. ‘Arirang-2’: A Potato Variety Tolerant to Drought and Heat Stress vol.53, pp.4, 2021, https://doi.org/10.9787/kjbs.2021.53.4.482