DOI QR코드

DOI QR Code

Generation of valley polarized current in graphene using quantum adiabatic pumping

  • Wang, Jing (The Key Lab of RF Circuits and Systems of Ministry of Education of China, Hangzhou Dianzi University) ;
  • Chan, K.S. (Department of Physics and Materials Science, City University of Hong Kong)
  • Received : 2015.02.02
  • Accepted : 2015.03.30
  • Published : 2015.03.25

Abstract

We study a device structure which can be used to generate pure valley current and valley polarized current using quantum adiabatic pumping. The design of the structure allows the flexibility of changing the structure from one for pure valley current generation to one for valley polarized current generation by changing the applied electric potentials through changing the symmetry of the structure. The device is useful for the development of valleytronic devices.

Keywords

References

  1. Brouwer, P.W. (1998), "Scattering approach to parametric pumping", Phys. Rev. B, 58(16), 10135-10138. https://doi.org/10.1103/PhysRevB.58.R10135
  2. Castro Neto, A.H., Peres, N.M.R., Novoselov, K.S. and Geim, A.K. (2009), "The electronic properties of graphene", Rev. Modern Phys., 81, 109-162. https://doi.org/10.1103/RevModPhys.81.109
  3. Gunlycke, D. and White, C.T. (2011), "Graphene valley filter using a line defect", Phys. Rev. Lett., 106, 1-4.
  4. Geim, A. K. and Novoselov, K.S. (2007), "The rise of graphene", Nat. Mater., 6, 183-191. https://doi.org/10.1038/nmat1849
  5. Jiang, Y., Low, T., Chang, K., Katsnelson, M.I. and Guinea, F. (2013), "Generation of pure bulk valley current in graphene", Phys. Rev. Lett., 110(2), 1-5.
  6. Liu, J.F. and Chan, K.S. (2011), "Spin-polarized quantum pumping in bilayer graphene", Nanotechnology, 22, 395201. https://doi.org/10.1088/0957-4484/22/39/395201
  7. Pereira, Jr. J.M., Peeters, F.M., Costa Filho, R.N. and Farias, G.A. (2008), "Valley polarization due to trigonal warping on tunneling electrons in graphene", J. Phys. Conden. Matter, 21, 045301.
  8. Pereira, V.M. and Castro Neto, A. H. (2009), "Strain engineering of graphene's electronic structure", Phys. Rev. Lett., 103, 046801. https://doi.org/10.1103/PhysRevLett.103.046801
  9. Rycerz, A., Tworzydlo, J. and Beenakker, C.W.J. (2006), "Valley filter and valley valve in graphene", Nat. Phys., 3, 172-175.
  10. Switkes, M., Marcus, C.M., Campman, K. and Gossard, A. C. (1999), "An adiabatic quantum electron pump", Science, 283, 1905-1908. https://doi.org/10.1126/science.283.5409.1905
  11. Thouless, D.J. (1983), "Quantization of particle transport", Phys. Rev. B, 27(10), 6083-6087. https://doi.org/10.1103/PhysRevB.27.6083
  12. Tiwari, R.P. and Blaauboer, M., (2010), "Quantum pumping in graphene with a perpendicular magnetic field", Appl. Phys. Lett., 97, 243112. https://doi.org/10.1063/1.3528457
  13. Wang, L.G. and Zhu, S.Y., (2010), "Electronic band gaps and transport properties in graphene superlattices with one-dimensional periodic potentials of square barriers", Phys. Rev. B-Conden. Mat. Mater. Phys., 81, 205444. https://doi.org/10.1103/PhysRevB.81.205444
  14. Xiao, D., Yao, W. and Niu, Q. (2007), "Valley-contrasting physics in graphene: magnetic moment and topological transport", Phys. Rev. Lett., 99, 1-4.
  15. Zhai, F., Ma, Y. and Zhang, Y.T. (2011), "A valley-filtering switch based on strained graphene", J. Phys. Conden. Matt. Inst. Phys. J., 23, 385302. https://doi.org/10.1088/0953-8984/23/38/385302
  16. Zhang, Q., Chan, K.S. and Lin, Z. (2011), "Spin current generation by adiabatic pumping in monolayer graphene", Appl. Phys. Lett., 98, 1-3.
  17. Zhang, Q., Lin, Z. and Chan, K.S. (2012), "Pure spin current generation in monolayer graphene by quantum pumping", J. Phys. Conden. Matt., 24, 075302. https://doi.org/10.1088/0953-8984/24/7/075302
  18. Zhu, R. and Chen, H. (2009), "Quantum pumping with adiabatically modulated barriers in graphene", Appl. Phys. Lett., 95, 122111. https://doi.org/10.1063/1.3236785
  19. Zutic, I., Fabian, J. and Das, S.S. (2004), "Spintronics: fundamentals and applications", Rev. Modern Phys., 76, 323-410. https://doi.org/10.1103/RevModPhys.76.323

Cited by

  1. Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment vol.6, pp.3, 2015, https://doi.org/10.12989/anr.2018.6.3.201
  2. Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures vol.7, pp.3, 2015, https://doi.org/10.12989/anr.2019.7.3.209