DOI QR코드

DOI QR Code

학내 망 자원 효율화를 위한 빅 데이터 트래픽 분석

Big-Data Traffic Analysis for the Campus Network Resource Efficiency

  • An, Hyun-Min (Dept. of Computer and Information Science, Korea University) ;
  • Lee, Su-Kang (Dept. of Computer and Information Science, Korea University) ;
  • Sim, Kyu-Seok (Dept. of Computer and Information Science, Korea University) ;
  • Kim, Ik-Han (Dept. of Applied Statistics, Korea University) ;
  • Jin, Seo-Hoon (Dept. of Applied Statistics, Korea University) ;
  • Kim, Myung-Sup (Dept. of Computer and Information Science, Korea University)
  • 투고 : 2014.12.29
  • 심사 : 2015.03.16
  • 발행 : 2015.03.31

초록

급하게 일어나는 인터넷의 활성화는 그 어느 때보다 효율적인 엔터프라이즈 망 운영 방안을 필요로 하고 있다. 효율적인 망 운영을 위해서는 장기간의 트래픽 분석을 통해 망의 특성을 정확히 반영한 운영 정책 적용이 필요하다. 하지만 기존에는 급격하게 증가하는 장기간 트래픽 데이터의 처리가 불가능했고, 다양한 분석 결과를 낼 수 없는 단기간 분석만 이루어졌다. 최근 빅 데이터 분석 플랫폼과 도구의 개발로 인해 장기간 트래픽 분석이 가능하게 되었고, 이를 이용해 망의 특성을 정확히 반영할 수 있는 장기간 트래픽 분석을 통한 엔터프라이즈 망 자원효율화 방안이 요구되고 있다. 본 논문에서는 엔터프라이즈 망에서 발생한 장기간의 트래픽을 수집하고 저장 및 관리하는 방안에 대해 제안한다. 또한 분류기준을 정의하였으며, 수집된 빅 데이터 트래픽을 각 분류 기준으로 분류한 뒤 다각적인 통계 분석을 통해 망 자원을 효율화 하는 방안을 제안한다. 제안하는 방법을 학내 망에 적용하여 실험하였으며, 통계 분석 결과 시간과 공간, 그리고 사용목적에 따라 Quality of Service(QoS)정책을 달리 적용해야 함을 확인하였다.

The importance of efficient enterprise network management has been emphasized continuously because of the rapid utilization of Internet in a limited resource environment. For the efficient network management, the management policy that reflects the characteristics of a specific network extracted from long-term traffic analysis is essential. However, the long-term traffic data could not be handled in the past and there was only simple analysis with the shot-term traffic data. However, as the big data analytics platforms are developed, the long-term traffic data can be analyzed easily. Recently, enterprise network resource efficiency through the long-term traffic analysis is required. In this paper, we propose the methods of collecting, storing and managing the long-term enterprise traffic data. We define several classification categories, and propose a novel network resource efficiency through the multidirectional statistical analysis of classified long-term traffic. The proposed method adopted to the campus network for the evaluation. The analysis results shows that, for the efficient enterprise network management, the QoS policy must be adopted in different rules that is tuned by time, space, and the purpose.

키워드

참고문헌

  1. Y. Wang, Y. Xiang, W. L. Zhou, and S. Z. Yu, "Generating regular expression signatures for network traffic classification in trusted network management," J. Network Comput. Appl., vol. 35, pp. 992-1000, May 2012. https://doi.org/10.1016/j.jnca.2011.03.017
  2. B. Park, Y. Won, J. Chung, M. S. Kim, and J. W. K. Hong, "Fine-grained traffic classification based on functional separation," Int. J. Network Management, vol. 23, pp. 350-381, Sept. 2013. https://doi.org/10.1002/nem.1837
  3. C. S. Park, J. S. Park, and M. S. Kim, "Automatic Payload Signature Generation System," J. KICS, vol. 38B, no. 08, pp. 615-622, Aug. 2013. https://doi.org/10.7840/kics.2013.38B.8.615
  4. J. H. Choi, J. S. Park, and M. S. Kim, "Processing speed improvement of HTTP traffic classification based on hierarchical structure of signature," J. KICS, vol. 39B, no. 04, pp. 191-199, Apr. 2014. https://doi.org/10.7840/kics.2014.39B.4.191
  5. J. S. Park, S. H. Yoon, and M. S. Kim, "Performance improvement of the payload signature based traffic classification system using application traffic locality," J. KICS, vol. 38B, no. 7, pp. 519-525, Jul. 2013. https://doi.org/10.7840/kics.2013.38B.7.519
  6. S. Lohr, The age of big data, New York Times, 11, 2012.
  7. T. Oetiker, "Monitoring your IT gear: the MRTG story," IT Professional, vol. 3, no. 6, pp. 44-48, 2001. https://doi.org/10.1109/6294.977771
  8. RRDtool, Available at: http://oss.oetiker.ch/rrdtool/.
  9. Bro, Available: http://www.bro.org/.
  10. Ntop, Available: http://www.ntop.org/.
  11. Snort, Available at: http://www.snort.org.
  12. B. H. Hong and H. J. Joo, "A study on the monitoring model for traffic analysis and application of big data," 2013.
  13. S. P. Huang and G. E. Meng, "Research on the application of hadoop platform in the big data processing," Modern Computer, vol. 29, no. 4, 2013.
  14. Hadoop, Available: http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.
  15. A. D. Sarma, F. N. Afrati, S. Salihoglu, and J. D. Ullman, "Upper and lower bounds on the cost of a map-reduce computation," Very Large Data Bases(VLDB) Endownment, pp. 277-288, Riva del Garda, Italy, 2013.

피인용 문헌

  1. 공간 태그된 트윗을 사용한 밀도 기반 관심지점 경계선 추정 vol.42, pp.2, 2015, https://doi.org/10.7840/kics.2017.42.2.453
  2. 하둡 기반 네트워크 로그 시스템 vol.17, pp.5, 2015, https://doi.org/10.7236/jiibc.2017.17.5.125