DOI QR코드

DOI QR Code

Joint Spatial Division and Reuse for Maximizing Network Throughput in Densely-Deployed Massive MIMO WLANs

고밀집 환경에서 대용량 MIMO WLAN의 네트워크 용량 최대화를 위한 결합 공간 분할 및 재사용 기법

  • Choi, Kyung Jun (School of Electrical & Electronic Engineering, Yonsei University) ;
  • Kim, Kyung Jun (School of Electrical & Electronic Engineering, Yonsei University) ;
  • Kim, Kwang Soon (School of Electrical & Electronic Engineering, Yonsei University)
  • Received : 2015.03.09
  • Accepted : 2015.03.25
  • Published : 2015.03.31

Abstract

In this paper, joint spatial division and reuse (JSDR) scheme is proposed for maximizing network throughput in densely-deployed wireless local area networks equipped with massive antenna array. The proposed JSDR scheme divides the massive spatial space into two subspaces: one is for suppressing the interference from the neighboring access points and another is for sensing the carrier sensing and transmitting the information-bearing signals to intended stations. By using computer simulation, the proposed JSDR can provide 133% higher network throughput, compared to the carrier sensing technique defined in the IEEE 802.11 standard so that the proposed JSDR is suitable for the next generation WLAN systems.

본 논문에서는 고밀집 환경에서 대용량 MIMO가 장착된 무선랜 시스템의 효율을 높이기 위한 방식으로 결합공간 분할 및 재사용 기법을 제안한다. 제안한 기법은 다중 안테나로 생성할 수 있는 공간 자원을 간섭을 미리 억제하는데 사용하는 공간 자원과 캐리어 센싱 및 전송을 하는데 이용하는 공간 자원으로 분리한다. 분리된 공간자원의 양에 따라 다른 캐리어 센싱 한계값을 할당하여, 해당 공간 자원으로의 전송 여부를 결정한다. 이 방식은 공간 분할 (spatial division) 최적화 문제와 공간 재사용 (spatial reuse) 최적화 문제를 동시에 고려해 네트워크의 전송 용량을 최대화한다. 시뮬레이션을 통해 제안한 기법이 IEEE 802.11에서 정의된 캐리어 센싱 기법보다 네트워크의 용량을 133% 증가시키므로 차세대 무선랜 시스템에 적용하여 사용자에게 우수한 전송 품질을 제공해 줄 수 있음을 보인다.

Keywords

References

  1. C. X. Wang, et al., "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Commun. Mag., vol. 52, no. 2, pp. 122-130, Feb. 2014. https://doi.org/10.1109/MCOM.2014.6736752
  2. Informa/Mobidia, "Understanding the role of managed public Wi-Fi in today's smartphone user experience: A global analysis of smartphone usage trends across cellular and private and public Wi-Fi networks," Feb. 2013.
  3. IEEE 802.11, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE standard for information technology telecommunications and information exchange between systemslocal and metropolitan area networks-specific requirement, 1999.
  4. Y. Zhu, Q. Zhang, Z. Niu, and J. Zhu, "On optimal QoS-aware physical carrier sensing for IEEE 802.11 based WLANs: theoretical analysis and protocol design," IEEE Trans. Wirel. Commun., vol. 7, no. 4, pp. 1369-1378, Apr. 2008. https://doi.org/10.1109/TWC.2008.060953
  5. F. Rossetto and M. Zorzi, "Enhancing spatial reuse in ad hoc networks by carrier sense adaptation," in Proc. MILCOM 2007, pp. 1-6, Orlando, USA, Oct. 2007.
  6. L. Fu, S. C. Liew, and J. Huang, "Effective carrier sensing in CSMA networks under cumulative interference," IEEE Trans. Mob. Comput., vol. 12, no. 4, Apr. 2013.
  7. X. Cheng, et al., "Communicating in the real world: 3D MIMO," IEEE Wirel. Commun., vol. 21, no. 4, pp. 136-144, Aug. 2014. https://doi.org/10.1109/MWC.2014.6882306
  8. Z. Wen, B. Li, Z. Luo, D. Chen, S. Wang, and W. Xu, "Discussion on massive MIMO for HEW," IEEE 802.11-13/104r2, Sept. 2013.
  9. E. G. Larsson, F. Tufvesson, O. Edfors, and T. L. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Commun. Mag., vol. 52, no. 2, pp. 186-195, Feb. 2014. https://doi.org/10.1109/MCOM.2014.6736761
  10. F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, "Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40-46, Jan. 2013. https://doi.org/10.1109/MSP.2011.2178495
  11. A. Adhikary, J. Nam, J. Y. Ahn, and G. Caire, "Joint spatial division and multiplexing-the large-scale array regime," IEEE Inf. Theory, vol. 59, no. 10, pp. 6441-6463, Oct. 2013. https://doi.org/10.1109/TIT.2013.2269476
  12. H. Choi, "Carrier sensing multiple access with collision resolution (CSMA/CR) protocol for next-generation wireless LAN," J. KICS, vol. 38A, no. 01, pp. 33-43, Jan. 2013. https://doi.org/10.7840/kics.2013.38A.1.33
  13. W. Lim, D. Kim, Y. Suh, and D. Kwon, "A contention window adjustment algorithm for improving fairness between uplink and downlink in IEEE 802.11 WLANs," J. KICS, vol. 36, no. 4, pp. 329-336, 2011. https://doi.org/10.7840/KICS.2011.36A.4.329
  14. E. G. Lee and S. H. Rhee, "A token-ring-based MAC protocol in IEEE 802.11 WLANs," J. KICS, vol. 39B, no. 01, pp. 38-40, Jan. 2014. https://doi.org/10.7840/kics.2014.39B.1.38
  15. B. Alawieh, Y. Zhang, C. Assi, and H. Mouftah, "Improving spatial reuse in multihop wireless networks - a survey," IEEE Commun. Surveys & Tutorials, vol. 11, no. 3, pp. 71-91, 3rd Quarter, 2009. https://doi.org/10.1109/SURV.2009.090306
  16. C. Thorpe and L. Mutphy, "A survey of adaptive carrier sensing mechanisms for IEEE 802.11 wireless networks," IEEE Commun. Survey & Tutorials, vol. 16, no. 3, pp. 1266-1293, 3rd Quarter, 2014. https://doi.org/10.1109/SURV.2014.031814.00177
  17. M. Z. Sian and M. Krunz, "An overview of MIMO-oriented channel access in wireless networks," IEEE Wirel. Commun., vol. 15, no. 1, pp. 63-69, Feb. 2008. https://doi.org/10.1109/MWC.2008.4454706
  18. D. Tse and P. Viswanath, Fundamentals of wireless communications, Cambridge University Press, 2005.
  19. E. Perahia and R. Stacey, Next generation wireless LANs: 802.11n and 802.11ac, Cambridge Univ. Press, 2013.

Cited by

  1. 무선랜 시스템에서 전이중 통신을 위한 MAC 프로토콜 분석 vol.40, pp.7, 2015, https://doi.org/10.7840/kics.2015.40.7.1276
  2. 실내 공간 스펙트럼 제어를 위한 종이기반 재구성 주파수 선택구조 설계 vol.41, pp.7, 2015, https://doi.org/10.7840/kics.2016.41.7.775
  3. 고효율 차세대 무선랜 시스템을 위한 전이중 거대 다중입출력 vol.41, pp.8, 2015, https://doi.org/10.7840/kics.2016.41.8.921