DOI QR코드

DOI QR Code

A Filtered-x Affine Projection Sign Algorithm with Improved Convergence Rate for Active Impulsive Noise Control

능동 충격성 소음 제어를 위한 향상된 수렴 속도를 가지는 Filtered-x 인접 투사 부호 알고리즘

  • Received : 2014.11.24
  • Accepted : 2015.01.02
  • Published : 2015.03.31

Abstract

In this paper, we propose a new Modified Filtered-x Affine Projection Sign Algorithm(MFxAPSA) to improve the convergence speed of the conventional MFxAPSA which has been proposed for active control of impulsive noise. Under the impulsive noise environment, the adaptive algorithms based on the second order moment such as the Filtered-x Least Mean Square(FxLMS) show slow convergence speed or diverge because the noise source tends to have infinite variance. The MFxAPSA is the algorithm derived by applying the Affine Projection Sign Algorithm(APSA) to active noise control. The APSA has an advantage that it does not need the calculation for the inverse matrix, so it may be suitable for the active noise control that requires low computational burden. The proposed MFxAPSA also has APSA's advantage and furthermore, better performance than the conventional MFxAPSA. We carried out a performance comparison of the proposed MFxAPSA with the conventional MFxAPSA. It is shown that the proposed MFxAPSA has the faster convergence speed than the conventional MFxAPSA.

본 논문에서는 충격성 소음의 능동 제어를 위해 제안된 Modified Filtered-x Affine Projection Sign Algorithm(MFxAPSA)의 수렴 속도를 향상시키기 위한 새로운 MFxAPSA를 제안하였다. 능동 소음 제어에서 소음원이 충격성 잡음을 포함하는 경우, 무한한 크기의 분산을 갖으려는 성질 때문에 Filtered-x affine Projection Sign Algorithm(FxLMS)와 같이 2차 모멘트를 기반으로 유도된 적응 알고리즘들은 수렴 속도가 매우 느리거나 발산하는 경향이 있다. MFxAPSA는 기존에 제안된 Affine Projection Sign Algorithm(APSA)을 능동 충격성 소음 제어에 적용한 알고리즘이다. APSA은 역행렬 연산을 요구하지 않는다는 장점으로 인해 낮은 연산량을 요구하는 능동 소음 제어에 적합하다. 본 논문에서는 기존의 MFxAPSA와 같이 역행렬 연산을 요구하지 않으면서 더 좋은 수렴 특성을 가지는 새로운 MFxAPSA를 제안하였다. 두 알고리즘의 성능을 비교하는 컴퓨터 모의 실험을 수행하여 제안된 알고리즘의 수렴 특성이 더 좋음을 보였다.

Keywords

References

  1. S. J. Elliott, Signal Processing for Active Control (Academic Press, San Diego, CA, 2001), pp. 103-175.
  2. S. M. Kuo and D. R. Morgan, Active Noise Control Systems : Algorithms and DSP Implementations (Wiley, New York, 1996), pp. 53-146.
  3. X. Sun, S. M. Kuo, and G. A. Meng, "Adaptive algorithm for active control of impulsive noise," Journal of Sound and Vibration, 291, 516-522 (2006). https://doi.org/10.1016/j.jsv.2005.06.011
  4. C. L. Nikias, Signal Processing with Alpha-stable Distribution and Applications (Wiley, New York, 1995).
  5. M. Shao and C. L. Nikias, "Signal Processing with fractional lower order moments: Stable processes and their applications," Proc. IEEE, 81, 986-1010 (1993). https://doi.org/10.1109/5.231338
  6. M. T. Akhtar and W. Mitsuhashi, "Improving robustness of filtered-x least mean p-power algorithm for active attenuation of standard symmetric $\alpha$-stable impulsive noise," Applied Acoustics, 72, 668-694 (2011).
  7. T. Shao, Y. Zheng, and J. Benesty, "An affine projection sign algorithm robust against impulsive interferences," IEEE Signal Process. Lett. 17, 327-330 (2010). https://doi.org/10.1109/LSP.2010.2040203
  8. L. Xiao, M. Wu, H. Sun, J. Yang, and J. Tian, "Modified Filtered-x Affine Projection Sign Algorithm For Active Control Of Impulsive Noise," ISCV21, Beijing, China, July 13-17 (2014).