
Purposes, Results, and Types of Software Post Life Cycle Changes

Seokha Koh*․Man Pil Han**

Abstract

This paper addresses the issue how the total life cycle cost may be minimized and how the cost should

be allocated to the acquirer and developer. This paper differentiates post life cycle change (PLCC) endeavors

from PLCC activities, rigorously classifies PLCC endeavors according to the result of PLCC endeavors, and

rigorously defines the life cycle cost of a software product. This paper reviews classical definitions of software

‘maintenance’ types and proposes a new typology of PLCC activities too. The proposed classification schemes

are exhaustive and mutually exclusive, and provide a new paradigm to review existing literatures regarding

software cost estimation, software ‘maintenance,’ software evolution, and software architecture from a new

perspective.

This paper argues that the long-term interest of the acquirer is not protected properly because warranty

period is typically too short and because the main concern of warranty service is given to removing the

defects detected easily. Based on the observation that defects are caused solely by errors the developer

has committed for software while defects are often induced by using for hardware (so, this paper cautiously

proposes not to use the term ‘maintenance’ at all for software), this paper argues that the cost to remove

defects should not be borne by the acquirer for software.

Keywords：Software Maintenance, Software Warranty Service, Software Evolution, Architecture

Erosion, Life Cycle Cost

1)

Received: 2015. 06. 08. Final Acceptance: 2015. 09. 19.

※ This work was supported by the research grant of Chungbuk National University in 2013.
 * Corresponding Author, Department of Management Information Systems, Chungbuk National University, e-mail: shkoh@cbnu.ac.kr
** Department of Management Information Systems, Chungbuk National University, e-mail: hau7070@hanmail.net

144 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

1. Introduction

In the early 1980s, software evolution liter-

atures introduced the so-called SPE classi-

fication scheme classifying software programs

into three classes and declared that the laws of

software evolution refer only to E-type software

[Herraiz et al., 2013]:

y S-type: “Specified programs are derivable

from a static specification and can be for-

mally proven as correct or not”,

y P-type: “Problem-solving programs attempt

to solve problems that can be formulated

formally, but which are not computationally

affordable. Therefore, the program must be

based on heuristics or approximations to the

theoretical problem”,

y E-type: “Evolutionary programs are reflec-

tions of human processes or of a part of the

real world. These kinds of programs try to

solve an activity that somehow involves

people or the real world.”

The software life cycle can be divided into two

major parts: before and after delivery. The life

cycle of a software system after the initial devel-

opment or the initial delivery release is frequently

called post life cycle. An E-type software system

evolves as the result of a series of changes during

its post life cycle (PLCC).1) [Belady and Lehman,

1976; Lehman, 1974, 1985, 1996; Lehman and

Belady, 1985; Lehman and Rami, 2003; Riaz et

1) In this paper, the change or changes made on a soft-
ware product after its delivery will be referred as
PLCC (post-life cycle change/changes).

al., 2009]. This paper addresses the issues re-

garding changing an E-type software system

after its delivery.

Changing a software system after its delivery

is typically called ‘maintenance.’ Oxford online

dictionary defines maintenance as “the process

of preserving a condition or situation of being

preserved.” Sharing the same term ‘maintenance,

people (including managers) frequently use anal-

ogy of hardware maintenance when they address

issues regarding software maintenance. The term

maintenance, however, bears a significantly dif-

ferent meaning for software as compared with

facility or equipment [Hatton, 2007].

NF EN 13306 [2001] defines maintenance, ir-

respective of the type of items considered except

software, as “combination of all technical, ad-

ministrative and managerial actions during the

life cycle of an item intended to retain it in, or

restore it to, a state in which it can perform the

required function.” On the other hand, the typical

definitions of maintenance of software are as

follows:

y Boehm [1981]: “Modifying of existing op-

erational software while leaving its primary

functions intact.”

y GAO (The American General Accounting

Office): “All work done on a system after

it first went into operation or production”

[Martin and Osborne, 1983].

y ANSI/IEEE Std. 729 [1983]: “Modification of

a software product after delivery to correct

faults, to improve performance or other at-

tributes, or to adapt the product to a changed

environment.”

Vol.22 No.3 Purposes, Results, and Types of Software Post Life Cycle Changes 145

y IEEE Std. 1219-1998 [1998]: “Modification

of a software product after delivery to cor-

rect faults, to improve performance or other

attributes, or to adapt the product to a mo-

dified environment.

y ISO/IEC 14764 [2006]: “The totality of ac-

tivities required to provide cost-effective

support to a software system”, including

both pre-delivery maintenance activities (the

activities performed during the pre-delivery

stage, including planning for post-delivery

operations, supportability, and logistics de-

termination) and post-delivery maintenance

activities (the activities performed during

the post-delivery stage, including software

modification, training, and operating a help

desk). “The maintenance process contains

the activities and tasks necessary to modify

an existing software product while preserv-

ing its integrity and is initiated by a mod-

ification request (MR)”

GAO includes explicitly all changes made in

post life cycle (PLCC) into the single category

‘maintenance.’ For the accountants this was

clear division: By definition, every project has

a cut-off date, the date of initial delivery and

all costs prior to that date are charged to the

development project, all cost due to changes af-

ter that date are charged to maintenance oper-

ation [Sneed, 2004]. The definition of ANSI/

IEEE Std. 729 1983 is almost the same as that

of GAO in the essence and these two definitions

are still generally accepted as the standard defi-

nitions of software maintenance. Other defi-

nitions may be interpreted to include implicitly

all kinds of PLCC into the single category

‘maintenance.’

In short, for a hardware product, maintenance

generally means preserving and restoring of its

original state. That is, greasing or doing some-

thing to prevent it from wearing out or deterio-

rating physically or restoring broken or deterio-

rated parts to perform the required function again.

Software, however, neither wears out nor dete-

riorates physically and it is needless to grease

software as well as impossible. So, for a soft-

ware system, the term ‘maintenance’ is used to

refer to changing it from its original state [Koh,

2014].

A software system, unlike hardware, may

grow much bigger after its first delivery. Belady

and Lehman [1976] classify software products

‘static’ or ‘dynamic’ according to their growth

rate. Software evolution deals with the problems

associated with dynamically growing software

products [Sneed, 2004]. Software evolution, like

software ‘maintenance’, is concerned with what

happens to software programs after the initial

release and deals with the process by which

software programs are modified and adapted to

their changing environment [Herraiz et al.,

2013]. In the context of software evolution, the

focus is on system growth and improvement ac-

tivities like error correction are generally not

considered relevant [Sneed, 2004]. Adopting this

point of view, Koh [2014, 2015] classified PLCC

activities into two categories of ‘maintenance’

and ‘augmentation’ according to their impact on

growth rate.

146 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Koh [2014, 2015] divides the level of PLCC

work into PLCC endeavor and PLCC activity,

rigorously classifies PLCC endeavors according

to the result of PLCC endeavors, rigorously de-

fines the life cycle cost of a software product,

reviews classical definitions of software ‘main-

tenance’ types, and proposes a new typology of

PLCC activities. This paper elaborates the works

of Koh [2014, 2015]. The result will provide a

new paradigm to review existing literatures re-

garding software cost estimation, software ‘main-

tenance,’ software evolution, and software archi-

tecture erosion from a new perspective. This pa-

per addresses the issue of how to protect the

long-term interest of the software acquirer prop-

erly too, as well as short-term interest.

2. Hierarchy of PLCC Work

In this paper, we will define a generic level

of PLCC work as follow: 2)

y PLCC endeavor: In outsourcing environ-

ment, it includes all kinds of PLCC work

contracted separately under split contract

and the PLCC work initiated by a modifica-

tion request (MR) or a change request of

the acquirer.

In management information system environ-

ment or ‘in-house’ development environment in

which a software product is produced by an en-

2) This paper is the revision of the conference paper Koh
[2015]. This section includes Sec. 4. Hierarchy of PLCC
Work of the paper and a part of Sec. 5 Software Main-
tenance and Other Types of Software Post Life Cycle
Changes of Koh [2015], unchanged.

terprise to support of its own business and ad-

ministrative operations [Jones, 2000], the PLCC

endeavor includes all kinds of PLCC work exe-

cuted and managed as a separate unit of work,

corresponding to those in outsourcing environ-

ment.

According to ISO/IEC 14764-2006, software

maintenance is the ‘modification’ initiated by a

MR and is differentiated from migration which

involves PLCC too. It defines MR as the “generic

term used to identify proposed modifications to

a software product that is being maintained.”

According to ISO/IEC 14764-2006,

y During process implementation, the main-

tainer should “establish the plans and pro-

cedures which are to be executed during the

maintenance process.”

y During problem and modification analysis,

“the maintainer analyzes MRs/PRs; repli-

cates or verify the problem; develops op-

tions for implementing the modification;

documents the MR/PR, the results, and ex-

ecution options; and obtains approval for the

selected modification option.”

y During modification implementation, “the

maintainer develops and tests the modifica-

tion of the software product”,

y Maintenance review/acceptance “ensures that

the modification to the system are correct

and that they were accomplished in accor-

dance with the approved standards using

the correct methodology”,

y “During a system’s life, it may have to be

modified to run in different environments,

In order to migrate a system to a new envi-

Vol.22 No.3 Purposes, Results, and Types of Software Post Life Cycle Changes 147

ronment, the maintainer needs to determine

the actions needed to accomplish the migra-

tion, and then develop and document the

steps required to effect the migration”,

Migration includes, “beside adaptation of a

software product to the changed environ-

ment, conversion of data, parallel operation

of both old and new products, user training,

etc.”

y Once a software product has reached the

end of its useful life, it should be retired.

“An analysis should be performed to assist

in making the decision to retire a software

product. The analysis is often econom-

ic-based and may be included in the retire-

ment plan, and should if it is cost effective.”

A PLCC endeavor may be managed as either

a process or a project composed with multiple

processes (refer <Figure 1>). PMI [2013] de-

fines processes, procedures, projects, and activ-

ities as:

y Process: “A systematic series of activities

towards causing an end result such that one

or more inputs will be acted to create one

or more outputs.”

y Procedure: “An established method of ac-

complishing a consistent performance or

result, a procedure typically can be de-

scribed as the sequence of steps that will

be used to execute a process.”

y Project: “A temporary endeavor undertaken

to create a unique product, service, or result.”

y Activity: “A distinct, scheduled portion of

work performed during the course of a project.”

Source: Koh [2015].
<Figure 1> Hierarchy of PLCC Work

PLCC endeavor includes process and project

as its sub-categories. A project is composed with

multiple processes. On the other hand, a process

may belong to no project and be managed as

an independent and separate work unit. A process

is composed with multiple activities and may in-

clude multiple sub-processes. OMG’s [2011] defi-

nitions of process and activity coincide with those

of PMI [2013]. An activity has a unique objective,

whose achievement can be assessed objectively.

An activity may be composed with multiple pri-

mary changes. The category of primary change

includes two sub-categories: composite change

and atomic change. Regarding an object-oriented

software system as a directed graph of arbitrary

artifacts, Lehnert et al. [2012] classifies individual

software changes into two categories as follow-

ings and we will adopt and extend Lehnert et

al.’s definitions of atomic change and composite

148 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

change for general software systems other than

an object-oriented software system without any

further definition:

y Atomic changes: correspond to elementary

tree edit operations of add node, delete node,

delete edge, and update property,

y Composite changes: consist of sequences of

atomic changes and are based on previous

research on regression testing and trace-

ability maintenance.

 ✔Move: move one sub-graph to another

node,

 ✔Replace: replace one sub-graph by another

sub-graph,

 ✔ Split: split one sub-graph into several

sub-graphs,

 ✔Merge: merge several sub-graphs into

one,

 ✔ Swap: exchange two sub-graphs.

In this paper, the activity is regarded to be

the basic unit of work which has a unique end

or purpose. On the other hand, a process or a

project may have multiple ends or purposes.

3. Maintenance and Other Types of

PLCC Endeavors

3.1 Maintenance and Major PLCC Endeavors3)

Maintenance literatures generally define soft-

ware maintenance as a special type of software

modification. Some authors include only minor

3) This section is the same as the corresponding part
of Koh [2015], except the first sentence.

changes in ‘modification.’ For example, Hunt et

al. [2008] exclude the following types of chang-

ing endeavors from ‘modification’:

y Major redesign and redevelopment (more

than 50% new code) of a new software pro-

duct performing substantially the same func-

tion.

y Design and development of a sizable (more

than 20% of the source instructions com-

prising the existing product) interfacing

software package which requires relatively

little redesign of the existing product.

y Data processing system operation, data entry

and modification of values in the database.

On the other hand, modification of the soft-

ware product’s code, documentation, or data

base structure is typically included into main-

tenance.

ISO/IEC 14764-2006 differentiates ‘new devel-

opment’ form maintenance to include major PLCC

whose amount of the costs and resources do not

exceed the fixed price of their initial development.

That is, ISO/IEC excludes the PLCC whose size

is bigger than some significant ratio of initial

development from maintenance. Hatton [2007]

used PLCC projects whose duration is under 40

hours in his empirical study on software main-

tenance. Excluding ‘major PLCC’ from software

maintenance, it typically has following characte-

ristics [Abran and Nguyenkim, 1993]:

y The size and complexity of each main-

tenance work request are such that one or

two resources can usually handle it;

Vol.22 No.3 Purposes, Results, and Types of Software Post Life Cycle Changes 149

y Maintenance work requests come in more

or less randomly, and cannot be accounted

for individually in the annual budget-plan-

ning process;

y Minor enhancements (adaptive) work re-

quests in the enhancement category are re-

viewed with customers and can be assigned

priorities;

y The maintenance workload is not managed

using project management techniques, but

rather with queue management techniques;

y Maintenance has a broader scope of con-

figuration management with more opera-

tional considerations.

Since MRs come in more or less randomly and

cannot be accounted for individually in the annual

budget-planning process, the cost of software

maintenance work is generally covered by an an-

nual maintenance fee, which is typically a certain

percentage of the original development cost or

of the purchasing price [Sneed, 2004]. Without

any explicit mention, however, users tend to be-

lieve that they are given the right to ask for what-

ever they deem necessary to make their work

easier while the party responsible for the main-

tenance contends that the maintenance fee covers

only the costs of error correction and essential

adaptations required to keep the system in oper-

ation and that all else including optimization, reno-

vations, enhancements and non-essential adapta-

tions should be charged extra [Sneed, 2004]. It

seems to be one of the most important causes

of the chaos in the literature and practice regarding

software maintenance for authors and practi-

tioners to use the term ‘software maintenance’

without mentioning its scope explicitly [Chaptin

et al., 2001; Sneed, 2004]. So, it is necessary to

assort software maintenance or PLCC according

to the size of necessary work.

3.2 An Exhaustive and Mutually Exclusive

Typology of PLCC Endeavors4)

As noted above, there is no generally accepted

agreement on what software maintenance should

be. GAO defines software maintenance to in-

clude virtually all kinds of PLCC. That of IEEE

seems to include virtually all kinds of PLCC, for

there can hardly be other purpose of software

‘modification’ than correcting error, improving

performance or other attributes, or adapting the

product to a changed environment. ISO/IEC seems

to include only small PLCC requested rather

randomly in their ‘supporting activities.’

Reuse Ratio

of existing

system

Functional Growth Rate

of new system

low high

low Replacement Retirement

high Modification Enlargement

<Table 1> Types of Software PLCC

Based upon two parameters of the reuse ratio

of existing system and the functional growth

rate of resulting system, Koh [2014] classifies

PLCC into four types of maintenance, augmenta-

tion, replacement, and retirement. In this paper,

4) This section is almost the same as the section ‘A
Rigorous Typology of Software Post Life Cycle
Changes’ of Koh [2015]. The main difference is that
‘augmentation’ is substituted with ‘enlargement’ in
this paper. This section includes a paragraph of ‘Main-
tenance Process and Software Life Cycle’ of Koh’s
[2015] corresponding section 5 too.

150 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

we suggest to change the term ‘maintenance’

and ‘augmentation’ to ‘modification’ and ‘enlarge-

ment’, respectively, and not to use the term

‘maintenance’ at all.

Here, reuse includes any replacement effort

saved from redeploying artifacts of an existing

software product: specifications, programs, screens,

reports, data files, etc. The term ‘maintenance’

provokes confusions and it seems desirable to

refrain from using the term ‘maintenance’ for

software. So, we propose not to use the term

‘maintenance’ for Software PLCC at all. In <Table

1>, ‘modification’ virtually replaces ‘maintenance.’

When a software product is used no more

and/or only a small portion of a software product

is reused in a new software product which

shares only small portion of functionality with

the existing software product, the software pro-

duct is regarded to be retired. Koh [2014] defines

the life cycle of a software product as the period

between its inception and retirement, which in-

cludes the initial development and all changing

activities afterward. ‘New development whose

amount of the costs and resources do not exceed

the initial fixed price’ [ISO/IEC 14764-2006] and

‘redevelopment’ that usually occurs on a new

platform or with a different software environ-

ment are included in PLCC endeavors as mod-

ification, replacement, or enlargement. Decisions

regarding these activities affect life cycle cost of

a software product system. It is noticeable that

this classification scheme classifies PLCC en-

deavors during the whole life cycle of a software

product exhaustively and mutually exclusively.

It is very important for the management to

build a company wide software audit to identify

what software products are active on the net-

work day by day and to retire a software product

productive no longer [Koh, 2014]. According to

a survey on a cross section of businesses, about

75% of respondents said that they had no sys-

tem in place to deal with retiring software prod-

ucts, more than 70% reported that there were

redundant, deficient or obsolete software prod-

ucts being changed and supported on their net-

works, 40% estimated that unwanted software

products consumed more than 10% of their

budget, 40% reported that their company con-

ducted audits only on an as-needed basis, and

just over 13% said that they never conducted

software audit at all [Kooser, 2005].

A software product should be retired through

the analysis to determine if it is cost effective

to [ISO/IEC 14764-2006]:

y Retain outdated technology,

y Shift to new technology by developing a

new software product,

y Develop a new software product to achieve

modularity,

y Develop a new software product facilitate

maintenance;

y Develop a new software product to achieve

standardization,

y Develop a new software product to facilitate

vendor independence.

4. Purposes of Software Maintenance

4.1 Prevention and Correction

For hardware, prevention and correction are

Vol.22 No.3 Purposes, Results, and Types of Software Post Life Cycle Changes 151

Purpose/
Type

Key Words

NF EN 13306
(Hardware)

Lientz and
Swanson[1980]

IEEE Std
1219-1998

ISO/IEC
14764 : 2006

This Paper

Correction
Fault recognition,
Required function

Faults
Discovered

faults
Discovered
problems

Faults

Reactive
correction

- - - - Manifested as failures

Emergency/
Emergent
correction

- - Unscheduled
Unscheduled,
Temporary

Unscheduled,
Temporary

Prevention
Reduce the probability

of failure or
degradation

Forestall or
reverse

deterioration
-

Latent faults,
Before

operational

Perfection - Improve Improve
Latent faults,

Before
manifested

-

Proactive
correction

Latent faults

Enhancement - - -
New

requirement
New requirement,
Non-Functional

Adaption -
Suiting to
different
conditions

Changes of
environment

Changes of
environment

Changed requirements

Augmentation
New requirements,

Functional

Correction
y NF EN 13306: (Hardware) Maintenance carried out after fault recognition and intended to put an item into
a state in which it can perform a required function. This includes deferred maintenance as its sub-type.

y Lientz and Swanson: Changes are made in order to remove faults. This includes emergency fixes and routine
debugging.

y IEEE: Reactive modification of a software product performed after delivery to correct discovered faults. This
includes emergency maintenance as its sub-type.

y ISO/IEC: The reactive modification of a software product performed after delivery to correct discovered
problems. This includes emergency maintenance as its sub-type.

y This paper: Removing faults. The fault is defined as failing to satisfy requirements and removing faults denotes
letting unsatisfied requirements satisfied. This includes adding required but unimplemented functionality. This
category is divided further into proactive correction and reactive correction.

Prevention
y NF EN 13306: (Hardware) Maintenance carried out at predetermined intervals or according to prescribed criteria
and intended to reduce the probability of failure or the degradation of the functioning of an item. This includes
scheduled/planned, predetermined and condition base d maintenance as its sub-types.

y Lientz and Swanson: Changes made in order to forestall or reverse deterioration.
y ISO/IEC: Modification of a software product after delivery to detect and correct latent faults in the software
product before they become operational faults.

Proactive Correction
y This paper: Detecting and correcting latent faults in a software product before they are manifested as failures.

Reactive Correction
y This paper: Correcting faults in a software product after they are manifested as failures. This includes emergent
correction its sub-type.

<Figure 2> Definitions of Maintenance Types, or Purposes of PLCC Endeavors

152 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Emergency

y IEEE: Unscheduled modification performed to keep a system operational.

y ISO/IEC: Unscheduled modification performed to temporarily keep a system operational pending corrective

maintenance.

Emergent Correction

y This paper: Temporarily keeping a system operational, pending reactive maintenance.

Perfection

y Lientz and Swanson: Changes are made in order to improve. This includes customer enhancements, improvements

to documents, and optimization.

y IEEE: Modification of a software product after delivery to improve performance or maintainability.

y ISO/IEC: Modification of a software product after delivery to detect and correct latent faults in the software

product before they are manifested as failures.

 Adaption

y Lientz and Swanson: Changes are made in order to become suited to a different condition. This includes

accommodating changes to data inputs and files and accommodating to hardware and system software.

y IEEE: Modification of a software product performed after delivery to keep a computer program usable in a

changed or changing environment.

y ISO/IEC: The modification of a software product, performed after delivery, to keep a software product usable

in a changed or changing environment.

y This paper: Satisfying existing but changed requirements. The modification is typically performed to keep

a software product usable in a changed or changing environment.

Enhancement

y ISO/IEC: Modification to an existing software product to satisfy a new requirement.

y This paper: Satisfying new non-functional requirements.

Augmentation

y This paper: Satisfying new functional requirements.

<Figure 2> Definitions of Maintenance Types, or Purposes of PLCC Endeavors (continued)

traditionally regarded as the major types of

maintenance. ISO/IEC 14764 : 2006 defines pre-

ventive maintenance and corrective maintenance

as the maintenance to reduce the probability of

failure or degradation of the functioning of an

item and as the maintenance to put an item into

a state in which it can perform a required function

after a fault is recognized, respectively (refer

<Figure 2>).

For software too, Lientz and Swanson [1980]

recognize the corrective maintenance as a major

type of maintenance and define it as removing

faults. For hardware, corrective maintenance

consists primarily of removing faults too. For

hardware, however, the faults are those generated

by usage after the product was released or

changed previously while the faults are those has

existed already when the product was released

or changed for software. So, correction means

improving the product for software while it means

recovering the original state of the product for

hardware. That is, the term correction denotes

quite different phenomena for software and hard-

ware. This difference may induce confusions

Vol.22 No.3 Purposes, Results, and Types of Software Post Life Cycle Changes 153

among managers who are accustomed to hard-

ware maintenance and may produce significant

results because it is managers who make im-

portant decisions regarding software mainte-

nance.

Lientz and Swanson [1980] recognize the pre-

ventive maintenance as a major type of software

maintenance too, and define it as forestalling or

reversing deterioration. It is notable that their

definition of software preventive maintenance is

essentially the same as NF EN 13306’s definition

of hardware preventive maintenance: preventing

a product from deterioration or degradation by

usage or passage of time. Software, however,

never deteriorates by using or by passage of

time. So, it is needless to try to prevent a product

from deterioration by usage or passage of time.

For software, deterioration can occurs only as

side effects of deliberate changes.

The effort performed to prevent, detect and

correct faults, however, is generally called soft-

ware quality assurance or verification & vali-

dation (V&V) [Air Force Instruction 16-1001,

1996; ANSI/IEEE Std. 729-1983; Lewis, 1992,

p. 7; Ratkin, 1997, pp. 51-52; Schulmeyer and

MacKenzie, 2000, p. 2]. So, if prevention denotes

preventing new errors from being committed-

during PLCC endeavors, it is not differentiated

from software assurance or V&V. So, prevent-

ing new errors from being committed during

PLCC endeavors should not be regarded as a

generic type of independent and distinct PLCC

endeavors

So, ISO/IEC 14764-2006 defines software pre-

ventive maintenance as finding and correcting

‘existing but not-operational-yet’ faults, and

classifies it as a subtype of correction. Here, how-

ever, prevention denotes preventing existing

faults from being operational in ISO/IEC 14764-

2006 while it denotes preventing new faults from

occurring in NF EN 13306. This difference may

induce confusions also among managers who are

accustomed to hardware maintenance.

In this paper, we define correction as remov-

ing faults and classify it into proactive or re-

active according to whether the faults to be re-

moved are manifested as failures or not, re-

spectively (refer <Figure 2>). It includes adding

required but un-implemented functionality. Our

definitions of proactive correction and reactive

correction classify fault correction exhaustively

and mutually exclusively.

4.2 Adaption, Enhancement and Augmentation

Lientz and Swanson [1980] classified software

maintenance into four broad categories of adaptive

maintenance, corrective maintenance, perfective

maintenance, and others. Others include pre-

vention. Their classification is broadly accepted

as a standard classification of software main-

tenance [Hunt et al., 2008; Koh, 2014]. Following

Lientz and Swanson’s scheme, IEEE Std. 1219-

1998 classifies software maintenance into three

broad categories of adaptive, corrective, and per-

fective maintenance. It defines emergency main-

tenance as a subtype of corrective maintenance.

ISO/IEC 14764-2006 classifies maintenance in-

to two broad categories of correction and en-

hancement: correction is divided further into

corrective maintenance and preventive mainte-

nance, and enhancement encompasses all types

154 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

of changing effort other than fault correction.

According to it, modification requests are to be

classified as a correction or enhancement and later

identified as corrective, preventive, adaptive, or

perfective. Adaptive maintenance is ‘the mod-

ification of a software product, performed after

delivery, to keep a software product usable in

a changed or changing environment’ and perfec-

tive maintenance is ‘modification of a software

product after delivery to detect and correct latent

faults in the software product before they are

manifested as failures.’

ISO/IEC notes that adaptive maintenance pro-

vides ‘enhancement necessary to accommodate

changes in the environment in which a software

product operate’ and that perfective maintenance

provides ‘enhancement for users, improvement

of program documentation, and recording to im-

prove software performance, maintainability, or

other attribute.’ ISO/IEC’s note for perfective

maintenance coincides with Lientz and Swanson’s

[1980] or IEEE Std. 1219-1998’s definitions of per-

fective maintenance. According to its definition,

however, ISO/IEC’s perfective maintenance falls

under the category of ours proactive correction.

The discordance between the definition and note

for ISO/IEC’s perfective maintenance may pro-

duce confusion. Moreover, what is being perfect?

We strongly suggest refraining from using the

term ‘perfect.’

In this paper, we classify the purpose of soft-

ware maintenance into four broad categories: cor-

rection, adaption, enhancement, and augmenta-

tion (refer <Figure 2>). Adaptation, enhancement,

augmentation denote satisfying existing but

changed requirements, new nonfunctional require-

ments, and new functional requirements, respec-

tively. We assume that no one changes an existing

software product to deteriorate it, although it may

be deteriorated unexpectedly by being changed.

It is noticeable that our definitions classify the

purpose of software PLCC activities exhaustively

and mutually exclusively.

<Table 2> shows the distribution of time spent

among ‘maintenance’ types. In the table, main-

tenance types are classified and named according

to one of existing classification schemes re-

spectively by authors. The table shows the dis-

tribution of time spent among ‘maintenance’ types

varies widely among authors. Hatton [2007] inter-

prets this result as partly due to the fact that

many ‘maintenance’activities are difficult to clas-

sify according to these definitions. One of the

difficulties is, according to Hatton [2007], that

there is considerable overlap among perfective,

corrective, and adaptive maintenance tasks, and

it is not unusual, for example, while performing

adaptive maintenance to find a defect, or perhaps

decide that some perfective rewriting is necessary

to add a new feature [Hatton, 2007]. Hatton’s

[2007] observation notes that a ‘maintenance’ en-

deavor may have and frequently has multiple

purposes.

<Table 2> also shows, regardless of the mean-

ing of prevention, that empirical researches reveal

that software maintenance named preventive is

very rare in practice. It manifests clearly that

prevention is not an important generic purpose

of software maintenance.

Sneed [2004] also argues that high percentage

of perfective maintenance may be interpreted so

that a lot of development is charged to ‘mainten-

Vol.22 No.3 Purposes, Results, and Types of Software Post Life Cycle Changes 155

Author LS80 HW84 DK92 YLC94 GL96 SN96 KS97 HT07

Origin of Data USA - -
Hong

Kong
- - - Britain

Types of

Change

Enhance 51.3 28 25 39.7 23 35 5 40

Customer enhancements 41.8 - - - - - -

Improvements to documents 5.5 - - - - - -

Optimization 4.0 - - - - - -

Adapt 23.6 29 46 9.8 42 52 83 54

Data inputs and files 17.4 - - - - - -

HW and system SW 6.2 - - - - - -

Correct 21.7 19 18 15.7 37 9 12 6

Emergency fixes 12.4 - - - - - -

Routine debugging 9.3 - - - - - -

Others

Prevention

Answering questions

Documentation

Tuning

Re-engineering

3.4

3.4

-

-

-

-

24

-

-

-

-

-

11

-

11

-

-

-

25.8

12.7

9.0

7.1

6.0

-

-

-

-

-

-

4

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Legend: DK02 = [Dekleva, 1992], HT07 = [Hatton, 2007], GL = [Glass, 1996], HW84 = [Helms and Weiss, 1984], KS97 = [Kemerer

and Slaughter, 1997], LS80 = [Lientz and Swanson, 1980], SN96 = [Sneed, 1996], YLC94 = [Yip et al., 1994].

Source: Koh [2015].

<Table 2> Percentages of ‘Maintenance’ Efforts by Types

ance’ budget. That is, in evolutionary or iterative

development environment, especially where the

same group performs both development and

maintenance, development of new increments

may be easily classified as perfective main-

tenance. Hatton [2007] argues that this problem

is aggravated by the fact that a change of a type

often includes or induces changes of other types

or that initial appraisal of the type of change

necessary is often inaccurate to result in other

type of change implemented. It is notable that

Yip et al. [1994] separate out software re-en-

gineering from perfective maintenance into an-

other type.

Correction, adaptation, enhancement, and aug-

mentation are purposes of PLCC endeavors. The

purpose cannot be an appropriate standard of the

classification of PLCC endeavors, because a

PLCC endeavor may have multiple purposes.

That is, classification of PLCC endeavor accor-

ding to their purposes does not classify PLCC

endeavors mutually exclusively. The classifica-

tion overlaps. Moreover, the purpose may change

during a PLCC endeavor.

Because there are considerable overlap and

transitions among various kind of maintenance

tasks, prediction of the effort necessary for any

kind of change across a range of software products

is generally very inaccurate at start and become

considerably more accurate as time goes by

156 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

[Hatton, 2007]. Empirical evidence seems to imply

that experience does not improve maintainer’s

estimation: that is, one could not, except for cor-

rective, small and simple maintenance tasks, have

more confidence in the predictions of an experi-

enced maintainer than the predictions of an inex-

perienced maintainer [Jorgensen et al., 2000].

5. Results of PLCC Endeavors

5.1 Deterioration of Software

The results of a PLCC endeavor may be dif-

ferent from its original purposes. No one would

change a software system to deteriorate it. As

a side effect of a PLCC endeavor, however, new

faults may be introduced, making the changed

software system deteriorate. That is, although

deterioration cannot be the purpose software

PLCC, it can be the result of a software PLCC

endeavor.

Another type, much more important, of dete-

rioration that can be caused by PLCC endeavors

is erosion of architecture. The deterioration or

erosion of software architecture is addressed

using various terms such as architectural de-

cay, architecture degeneration, architecture drift,

architecture erosion, code decay, design erosion,

software aging, software erosion, or software

entropy [Dalgarno, 2009; de Silva and Balasu-

bramaniam, 2012; Eick et al., 2001; Grottkeeet

et al., 2008; Hochstein and Lindvall, 2005; Huang

et al., 1995; Izurieta and Bieman, 2007; Jacobson,

1992; Koh, 2012; Parnas, 1992; Perry and Wolf,

1992; Riaz et al., 2009; Stringfellow et al., 2006;

van Gurp and Bosch, 2002]. Although these

terms imply that erosion occurs at different ab-

straction levels, the underlying perspective in

each discussion is that software erosion is a

consequence of changes that violate design

principles [de Silva and Balasubramaniam, 2012].

The architecture erosion of a software product

results from either violating architectural princi-

ples or insensitivity to the architecture, and makes

the software more complex, harder to understand,

and harder to change, and ultimately makes it

become progressively less satisfactory in use [de

Silva and Balasubramaniam, 2012; Perry and

Wolf, 1992]. Eroded architecture can be repaired

or recovered [Bellay and Gall, 1997; de Silva and

Balasubramaniam, 2012; Gannod and Cheng, 1999;

Harris et al., 1995]. Fowler’s [1999] refactoring

may be considered as an example of architecture

recovery methods. Architecture erosion may be

prevented by using architecture conscious PLCC

processes too [Koh, 2013].

5.2 Evolution of Software

As the result of a sequence of PLCC, a software

product evolves. Lehman published the first ver-

sion of the laws of software evolution in 1974,

revised them in 1978 and 1980s, and published

the last version of the laws of ‘E-type’ software

evolution in 1996. The laws of software evolution

have remained unchanged in essence thereafter

[Herraiz et al., 2013]. <Table 3> shows the 1996

version of the laws and their empirical evidence

[Herraiz et al., 2013; Koh, 2014].

Laws of software evolution assert that an

E-type system either becomes progressively

less satisfactory in use or must be continually

Vol.22 No.3 Purposes, Results, and Types of Software Post Life Cycle Changes 157

Law of Software Evolution

Empirical Study on the Hypotheses of 1990s

GT

2000

GT

2001

BP

2003

Ro

2005

He

2006

Ko

2007

IF

2010

Ne

2013

Va

2010

Law of Continuous Change

An E-type system must be continually adapted, or else

it becomes progressively less satisfactory in use.

V V V V V V V V V

Law of Increasing Complexity

As an E-type is changed, its complexity increases and

becomes more difficult to evolve unless work is done

to maintain or reduce complexity.

I I V I I I I I I

Law of Self-Regulation

Global E-type system evolution is feedback regulated.
I I V I I - Pv I V

Law of Conservation of Organizational Stability

The work rate of an organization evolving an E-type

software system tends to be constant over the operational

lifetime of that system or phases of that lifetime.

I I V I I Pi V V I

Law of Conservation of Familiarity

In general, the incremental growth (growth rate trend)

of E-type system is constrained by the need to maintain

familiarity.

I I V I I -

Pv

Pi

- V

Law of Continuing Growth

Functional capability of E-type systems must be

continuously enhanced to maintain user satisfaction over

system lifetime.

V V V V V V V V V

Law of Declining Quality

Unless rigorously adapted and evolved to take into

account changes in the operational environment, the

quality of an E-type system will appear to be declining.

- - V - - - I I I

Law of Feedback System

E-type evolution processes are multi-level, multi-loop,

multi-agent feedback systems.

- - - - - - Pv I -

Legend: V = validated, I = invalidated, Pv = partially validated, Pi = partially invalidated, GT2000 = [Godfrey and Tu,

2000], GT2001 = [Godfrey and Tu, 2001], BP2003 = [Baouer and Pizka, 2003], Ro2005 = [Robles et al., 2005], He2006

= [Herraiz et al., 2006], Ko2007 = [Koch, 2005, 2007], IF2010 = [Israeli and Feitelson, 2010], Ne2013 = [Neamtiu et al.,

2013], VA2010 = [Vasa, 2010].

<Table 3> Laws of Software Evolution and their Empirical Evidences

adapted, that the adaptation makes the system

become progressively bigger, more complex, and

more difficult to comprehend and change it, and

that rigorous work should be done to maintain

or reduce complexity. <Table 3> shows, how-

ever, only the laws of continuous change and

continuing growth are consistently validated by

empirical studies. That is, an E-type system

becomes progressively less satisfactory in use

unless it is not continually adapted and aug-

mented with new functional capability.

The rest of the laws are not verified. That is,

some systems remain relatively constant in their

complexity after a sequence of PLCC even if

158 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

rigorous efforts to maintain or reduce complex-

ity are not devoted deliberately during the PLCC

processes.

5.3 ASR: Architecturally Significant Requirements

ASRs are typically defined to be those require-

ments that have measurable impact on the archi-

tecture of a software system [Chen et al., 2013].

Dependencies between requirements and archi-

tecture are reciprocal: ASRs play a significant

role in shaping the architectural design of a sys-

tem and constraining the set of viable architec-

tural alternatives and the existing architecture

constrains the financial viability of implementing

new feature requests [Cleland-Huang et al.,

2013].

In software engineering, nonfunctional re-

quirements describe how well functions of a

software system are accomplished while func-

tional requirements describe what a system

does, and they are regarded to represent global

concerns on the development and operational

costs of a system [Niu et al., 2013]. Therefore,

nonfunctional requirement attributes such as

maintainability, customizability, flexibility, re-

usability, extensibility, adaptability, accuracy,

reliability, availability, safety, dependability, in-

teroperability, composability, performance, effi-

ciency, etc., are generally regarded as natural

candidates of ASRs [Mirakhorli, 2011; Niu et al.,

2013].

Such nonfunctional requirements exhibit a wide

reaching impact throughout the entire software

lifecycle including development [Cleland-Huang

et al., 2013; Mirakhorli, 2011]. They, however,

seldom cause and drive PLCC. So, in the context

of evolution, architecture is the underlying factor

and ASRs are indicators which the quality of

architecture is loaded on as the underlying factor.

That is, nonfunctional requirements become ar-

chitecturally important when and only when their

attributes are deteriorated by the deteriorated

architecture. Nonfunctional ARSs are archi-

tecturally important only as indicators of the qual-

ity of a system’s architecture.

It is the functional requirements changed or

newly introduced that generally cause and drive

the evolution of a software system and that let

architectural decisions to be made. Nonfunctional

ARSs generally constrain the set of viable archi-

tectural alternatives driven to fulfill the functional

requirements. The functional requirements which

drive architecturally important decisions are very

specific to the evolution history of a software

system. We propose to denote such architecturally

important functional requirements specific to

software system as system-specific ARS and

denote nonfunctional ARSs as generic ARS. It

is important very much to differentiate the two

kinds of ARSs. In practice, the main focus of

architectural consideration should be given to the

specific ARSs.

6. Discussions: Who should Bear the

Cost of PLCC Activities?

It seems natural and proper for the acquirer

bear the cost to adapt, enhance or augment its

software system. Who, however, should bear

the cost to remove faults? The answer is simple:

The one who has caused the faults.

Vol.22 No.3 Purposes, Results, and Types of Software Post Life Cycle Changes 159

For both hardware and software, the cost to

remove the faults which occurred after the war-

ranty period is generally borne by the acquirer.

For hardware, it is proper to regard that such

faults are caused by using it. So, it is also proper

for the user to bear the cost to remove such

faults. For software, it is errors which have ex-

isted in a system since its delivery that causes

faults, and the acquirer is seldom responsible for

the errors. So, it is not the acquirer who should

bear the cost to remove faults of a software sys-

tem, regardless when the faults are manifested

or become operational. Then, who? It is the de-

veloper or one of the maintainers, if any, who

changed the system previously.

ISO/IEC 14764 [2006, pp. 25-28] recommends

for the acquirer to agree on ‘maintenance’ mod-

els with the original developer or a third party

‘maintainer’, which address all types of ‘main-

tenance’ and include new development unless

the amount of the costs and resources exceed

the initial fixed price. It recommends two types

of comprehensive ‘maintenance’ contract with a

fixed price:

y Blanket contract with fixed amounts: It in-

cludes all types of ‘maintenance’ and may

include new development.

y Split contract: It typically includes ‘corrective

maintenance’ (reactive correction) for an

agreed period. Preventive, perfective (proactive

correction), and adaptive ‘maintenance’ are

usually contracted separately for each.

If the developer is designated as the ‘maintainer

in advance, according to ISO/IEC 14764-2006, the

developer receives additional monetary reward

for removing the faults it has committed regard-

less contract type. The developer may interpret

the reward as an incentive for making defects

and leaving it un-removed over warranty period,

although with blank contract with fixed amount

it is not sure how much the reward will be. Even

if a third party is designated as the ‘maintainer,’

the developer does not receive any penalty for

the faults left over warranty period. So, the devel-

oper has no reason to mind leaving faults un-

removed over warranty period.

So, each error correcting activity should be

separated from other activities in a PLCC en-

deavor, and its cost should be charged to the

one responsible for the error. This may be very

costly in practice. The academics, however,

should provide some guidelines to help acquirers

to let the developers be more responsible for

their product.

Maintainability is affected by the architecture,

design, the coding and its programming lan-

guage and the testing activities and affects the

cost of PLCC endeavors [ISO/IEC 14764, 2006,

p. 28]. ISO/IEC 14764-2006 recommends that the

acquirer should establish and clarify the main-

tainability requirements and let the capability to

monitor and evaluate maintainability criteria

identified for each requirement to be developed

during the initial development, especially when

maintenance service is provided by a third party

and the maintainer cannot be involved in the de-

velopment process, which is the general case.

However, we argue, without citing concrete

empirical evidences, following postulations,

160 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Postulation 1: It is very costly to measure the

quality of software systems objectively.

Postulation 2: There is information imbalance

about quality of software quality between

the acquirer and the developer. That is, the

acquirer cannot access to all of the in-

formation the developer possesses. So, it is

generally not economical for the acquirer

to measure the quality of a software system

which it owns for itself.

Postulation 3: Defects associated with coding

and functional requirements tends to be

manifested sooner or later. So, it is possible

for the acquirer to motivate the developer

to prevent such defects from being deliv-

ered by letting the developer bear the cost

to remove such defects.

Postulation 4: Non-functional quality attributes

including maintainability are harder to

measure objectively than functional quality

attributes. Defects associated with non-

functional requirements are seldom man-

ifested objectively and clearly even after

a considerable time has elapsed since the

delivery. So, it is virtually impossible for

the acquirer to motivate the developer to

prevent such defects from being delivered,

at least, under current practice.

The postulations above lead to the assertion

that the long-term interest of the acquirer is not

protected properly [Koh and Ji, 2013] due to

short warranty period while main concern of

warranty is given to the defects detected easily.

ISO/IEC 14764-2006 recommends the acquirer

to bear the cost to remove defects after war-

ranty period. This obviously motivates the de-

veloper to neglect its basic obligation to increase

the quality of products it produces. Ultimately,

this produces distrust between the acquirer and

developer, hampering healthy development of

software industry. Further researches on how

to protect the acquirer’s long-term interests is

seriously needed.

7. Conclusions

For the defects of a hardware product used

for a certain period, the user is, at least partially,

responsible for the defects because the user

caused the product worn out by using it. For

the defects of a software system, the user is not

responsible for the defects. It is the developer

or, if any, third party maintainers who had com-

mitted the errors which cause the faults. So, er-

ror correction should be distinguished from

adapting, enhancing, and augmenting, and the

cost of error correction should be charged sepa-

rated from the costs of adapting, enhancing, and

augmenting.

Error correction, however, is often performed

with adapting, enhancing, or augmenting. Errors

may be detected and corrected during PLCC en-

deavors which are originally started to adapt,

enhance, or augment. So, the cost of error cor-

rection can be charged to those responsible for

each error only by tracing the costs at the level

of activity, not at the level of endeavor. The

paradigm proposed in this paper makes it possi-

ble, at least theoretically, to trace the costs at

the level of activity and separate the cost of ac-

tivities to correct each error from the cost of

Vol.22 No.3 Purposes, Results, and Types of Software Post Life Cycle Changes 161

other activities.

Adapting, enhancing, augmenting, and even

error-correcting may be regarded as subtypes

of improving. So, if we call software PLCC ac-

tivities to adapt, enhance, augment and correct

errors ‘maintenance,’ the term ‘maintenance’ de-

notes quite different phenomena for hardware

and software: improving a product for software

while preserving and/or restoring the original

state of a product for hardware. As the result,

confusion is induced. The customary payment

system for software ‘maintenance’ amplifies the

confusion.

It looks almost mysterious that managers of

acquiring organizations accept, although re-

luctantly, to bear the cost to fix errors for which

their organizations are not responsible. One of

seemingly reasonable explanations of this mys-

terious phenomenon is that error correction is

typically classified into a single category named

‘maintenance’ along with adaption, enhance-

ment, and augmentation and that managers are

so accustomed with hardware maintenance for

which they think it is natural and proper for

them to pay.

Even for software, it looks natural and proper

to managers that they bear the cost to adapt,

enhance, or augment. Moreover, prestigious or-

ganizations such as ISO/IEC recommend ac-

quirers to bears the cost of all kind of software

maintenance after the warranty period, for exam-

ple, under a blanket contract with fixed amount.

So, they pay the bills for all kinds of software

maintenance although they feel cheated. As the

natural consequence, however, they frequently

insist that all kind of PLCC endeavors are included

in the contract. This is not the result that software

developers or maintainers want. So, disputes

arise. We cautiously propose not to use the term

‘maintenance’ at all for software.

A PLCC endeavor may have multiple purposes.

Moreover, the purposes of a PLCC endeavor may

change during the endeavor. So, it is not a good

idea to classify PLCC endeavors according to their

purposes. Instead, we propose to classify all PLCC

endeavors rigorously into four types of mod-

ification, replacement, enlargement, and retire-

ment. The proposed classification scheme is based

on two dimensions reuse ratio and functional

growth rate, and is exhaustive and mutually

exclusive. The scheme is expected to help manag-

ers to anticipate the results of PLCC endeavors

and the associated costs more easily and

accurately. To let the expected benefit realized

in the practice, however, it is necessary to review

and improve the maintenance cost estimation

models according to the classification scheme

proposed in this paper.

Further researches on how to protect the ac-

quirer’s long-term interests are seriously needed.

Researches on how information from individual

PLCC endeavors should be fed back into and in-

tegrated with IT governance process are neces-

sary too.

References

[1] Abrahamsson, P., Babar, M. A., and Kruchen,

P., “Agility and Architecture: Can They

Coexist?”, IEEE Software, March/April 2010,

pp. 16-22.

[2] Abran, A. and Nguyenkim, H., “Measurement

162 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

of the Maintenance Process from a Demand-

Based Perspective”, Journal of Software

Maintenance: Research and Practice, Vol.

5, No. 2, 1993, pp. 63-90.

[3] Air Force Instruction 16-1001, Verification,

Validation and Accreditation, June 1, 1996.

[4] Aldrich, J., Chambers, C., and Notkin, D.,

“ArchJava: Connecting Software Architec-

ture to Implementation”, Proceedings of the

24
th
International Conference on Software

Engineering, ACM, 2002, pp. 187-197.

[5] ANSI/IEEE Std, IEEE Standard Glossary

for Software Engineering Terminology, 1983,

pp. 729-1983.

[6] Belady, L. and Lehman, M., “A Model of

Large Program Development”, IBM Systems

J., Vol. 15, No. 3, 1976, p. 225.

[7] Bellay, B. and Gall, H., “A Comparison of

Four Reverse Engineering Tools”, Procee-

dings of the 4th Working Conference on

Reverse Engineering, IEEE, 1997, pp. 2-11.

[8] Boehm, B. W., Software Engineering E-

conomics, Prentice Hall PTR: Upper Saddle

River, NJ, USA, 1981.

[9] Chaptin, N., Hale, J., Kahn, K. R. and Jr.,

Tan, W. G., “Types of Software Evolution

and Software Maintenance”, Journal of Soft-

ware Maintenance and Evolution, Vol. 13,

No. 1, 2001, p. 3.

[10] Chen, L., Babar, M. A., and Nuseibeh, B.,

“Characterizing Architecturally Significant

Requirements”, IEEE Software, Vol. 40,

2013, pp. 38-45.

[11] Cleland-Huang, J., Hanmer, R. S., Supakhul,

S., and Mirakhorli, M., “The Twin Peaks

of Requirements and Architecture”, IEEE

Software, 2013, pp. 24-29.

[12] Dalgarno, M., “When Good Architecture

Goes Bad”, Methods and Tools, Vol. 17, 2009,

pp. 27-34.

[13] Dekleva, S. M., “Software Maintenance: 1990

Status”, Journal of Software Maintenance:

Research and Practice, Vol. 4, No. 4, 1992,

pp. 233-247.

[14] de Silva, L. and Balasubramaniam, D., “Con-

trolling Software Architecture Erosion: A

Survey”, Journal of Systems and Systems,

Vol. 85, 2012, pp. 132-152.

[15] Eick, S. G., Graves, T. L., Karr, A. F., Marron,

J. S., and Mockus, A., “Does Code Decay?

Assessing the Evidence from Change Mana-

gement Data”, IEEE Transactions on Soft-

ware Engineering, Vol. 27, 2001, pp. 1-12.

[16] Fowler, M., Refactoring: Improving the

Design o Existing Code, Addison Wesley,

1999.

[17] Gannod, G. C. and Cheng, B. H. C., “A

Framework for Classifying and Comparing

Software Reverse Engineering and Design

Recovery Techniques”, Proceedings of the

6th Working Conference on Reverse Engin-

eering, IEEE, 1999, pp. 77-88.

[18] Glass, R. L., “Results of the First IS State-

of-the-Practice Survey”, The Software Prac-

titioner, May 1996, pp. 3-4.

[19] Godfrey, M. W. and Tu, Q., “Growth, Evolu-

tion, and Structural Change in Open Source

Software”, Proceedings of the International

Workshop on Principles of Software Evolu-

tion, 2001, pp. 103-106.

[20] Godfrey, M. W. and Tu, Q., “Evolution in

Open Source Software: A Case Study”,

Vol.22 No.3 Purposes, Results, and Types of Software Post Life Cycle Changes 163

Proceedings of the International Conference

on Software Maintenance, IEEE Computer

Society, Washington, DC, 2000, pp. 131-142.

[21] Grottke, M., Matias, R. and Trivedi, K. S.,

“The Fundamentals of Software Aging”,

Proceedings of 1st International Workshop

of Software Aging and Rejuvenation, IEEE,

2008, pp. 1-6.

[22] Harris, D. R., Reubenstein, H. B., and Yeh,

A. S., “Reverse Engineering to the Architec-

tural Level”, Proceedings of the 17th Inter-

national Conference on Software Engineer-

ing, ACM, 1995, pp. 186-195.

[23] Hatton, L., “How Accurately Do Engineers

Predict Software Maintenance Tasks?” Com-

puter, February 2007, pp. 64-69.

[24] Helms, G. L. and Weiss, I. R., “Applications

Software Maintenance: Can It Be Control-

led?”, ACM SIGMIS Database, Vol. 16, No.

2, 1984, pp. 16-18.

[25] Herraiz, I., Rodriguez, D., Robles, G., and

Gonzalez-Barahona, J. M., “The Evolution

of the Laws of Software Evolution: A Dis-

cussion Based on a Systematic Literature

Review”, ACM Computing Surveys, Vol. 46,

No. 2, Article 28, 2013.

[26] Hochstein, S. and Lindvall, M., “Combating

Architectural Degeneration: A Survey”, In-

formation and Software Technology, Vol. 47,

2005, pp. 643-646.

[27] Huang, Y., Kintala, C., Kolettis, N., and

Fulton, N. D., “Software Rejuvenation: Analysis,

Module and Applications”, Proceedings of

International Symposium on Fault-Tolerant

Computing, IEEE, 1995, pp. 381-390.

[28] Hunt, B., Turner, B., and McRitchie, K.,

“Software maintenance Implications on Cost

and Schedule”, Proceedings of Aerospace

Conference, 2008 IEEE, March 2008, pp. 1-8.

[29] IEEE, IEEE Std. 1219-1998, IEEE Standard

for Software Maintenance, 1998.

[30] ISO/IEC, ISO/IEC 14764(IEEE Std 14764-

2006), Software Engineering-Software Life

Cycle Processes-Maintenance (2nded.), 2006

-09-01.

[31] Israeli, A. and Feitelson, D. G., “The Linux

Kernel as a Case Study in Software Evol-

ution”, J. of System and Software, Vol. 83,

No. 3, 2010, pp. 485-501.

[32] Izurieta, C. and Bieman, J., “How Software

Designs Decay: A Pilot Study of Pattern

Evolution”, Proceedings of 1st International

Symposium on Empirical Software Engi-

neering and Measurement, IEEE, 2007, pp.

449-451.

[33] Jacobson, I., Object-Oriented Software Engi-

neering, Addison Wesley, 1992.

[34] Jones, C., Software, Assessments, Bench-

marks, and Best Practices, Addison Wesley

Longman, Inc., 2000.

[35] Jorgensen, M., Sjoberg, D. I. K., Kirkeboen,

G., “The prediction Ability of Experienced

Software Maintainers”, in Proceedings of

4th European Conference on Software Main-

tenance and Re-engineering, 2000, pp. 93-99.

[36] Kemerer, C. F. and Slaughter, S. A., “Deter-

minants of Software Maintenance Profiles:

An Empirical Investigation”, Journal of Soft-

ware Maintenance: Research and Practice,

Vol. 9, No. 4, 1997, pp. 235-251.

[37] Koch, S., “Evolution of Open Source Soft-

ware Systems-A Large-Scale Investiga-

164 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

tion”, Proceedings of the International Con-

ference on Open Source Systems, 2005.

[38] Koch, S., “Software Evolution in Open

Source Projects-A Large-Scale Investiga-

tion”, J. of Software Maintenance and Evolu-

tion Research Practice, Vol. 19, No. 6, 2007,

pp. 361-382.

[39] Koh, S., “Purposes and Types of Post Life

Cycle Changes”, Proceedings of 13th Inter-

national Conference on IT Applications and

Management: Diversity and Collaboration

in the Age of Digital Convergence, Phitsanulok,

Thailand, January 14-16, 2015, pp. 75-87.

[40] Koh, S., “Types of Post Life Cycle Changes

and Evolution of Software”, Proceedings of

12th International Conference on IT Appli-

cations & Management: Culture and Hu-

manities in the Digital Future, Kenya, July

8-9, 2014, pp. 51-55.

[41] Koh, S., “A Software Architecture Life Cycle

Model Based on the Program Management

Perspective: The Expanded Spiral Model”,

J. of Information Technology Applications

and Management, Vol. 20, No. 2, 2013, pp.

69-87.

[42] Koh, S., “An Extensive Model on Essential

Elements of Software Architecture”, J. of

Information Technology Applications and

Management, Vol. 19, No. 2, 2012, pp. 135-

147.

[43] Koh, S. and Ji, K. S., “Contextual Models

of Business Application Software Architec-

ture”, J. of Information Technology Appli-

cations and Management, Vol. 20, No. 3,

Sept. 2013, pp. 1-18.

[44] Kooser, A. C., “Old Software Draining your

IT Budget?”, Entrepreneur, May 2005, p. 24.

[45] Lehman, M. M., “Laws of Software Evolution

Revisited”, Proceedings of the European

Workshop on Software Process Technology,

Springer-Verlag, London, 1996, pp. 108-124.

[46] Lehman, M. M., “Program, Life Cycles, and

Laws of Software Evolution”, Proceedings

of the IEEE (Special Issue on Software

Engineering) 1980, pp. 1060-1076; with more

detail as “Programs, Programming and the

Software Life-Cycle”, in: System Design,

Infotech State of Art, Rept. Se 6, No. 9,

Pergamon Infotech Ltd. Maidenhead, 1981,

pp. 263-291; reprinted as Chapter 19 in

Lehman, M. M., L. A. Belady, Program Evo-

lution-Process of Software Change, Acade-

mic Press, London, 1985.

[47] Lehman, M. M., “Laws of Program Evolu-

tion-Rules and Tools for Programming

Management”, Proceedings of the Infotech

State of Art Conference, Why Software Pro-

jects Fail, 1978; also as Chapter 12 in M.M.

Lehman, L. A. Belady, Program Evolution-

Process of Software Change, Academic Press,

London, 1985.

[48] Lehman, M. M., “Programs, Cities, Students,

Limits to Growth?”, in: Imperial College of

Science and Technology Inaugural Lecture

Series, Vol. 9, 1974, pp. 211-229; Also in M. M.

Lehman, L. A. Belady, Program Evolution-

Process of Software Change, Academic

Press, London, 1985.

[49] Lehman, M. M., The Programming Process,

IBM Res. Rept. RC2722, December 1969; also

as Chapter 3 in M. M. Lehman, L. A. Belady,

Program Evolution-Process of Software

Vol.22 No.3 Purposes, Results, and Types of Software Post Life Cycle Changes 165

Change, Academic Press, London, 1985.

[50] Lehman, M. M., and Belady, L. A., Program

Evolution-Process of Software Change, Aca-

demic Press, London, 1985.

[51] Lehman, M. M. and Ramil, J. F., “Software

Evolution-Background, Theory, Practice”,

Information Processing Letters, Vol. 88,

2003, pp. 33-44.

[52] Lehnert, S., Farooq, Q., and Riebisch, M.,

“A Taxonomy of Change Types and its Ap-

plication in Software Evolution”, Procee-

dings of 2012 IEEE 19th International Con-

ference and Workshop on Engineering of

Computer-Based Systems, 2012, pp. 98-107.

[53] Lewis, R. O., Independent Verification and

Validation: A Life Cycle Engineering Pro-

cess for Quality Software, New York: John

Wiley and Sons, Inc., 1992.

[54] Lientz, B. and Swanson, B., Software Main-

tenance Management, Addison-Wesley, Rea-

ding, MA, 1980.

[55] Martin, R. J. and Osborne, W., “Guidance

ofSoftware Maintenance”, U.S. National

Bureau of Standards, NBS Pub. 500-129,

Dec, 1983.

[56] Mirakhorli, M., “Tracing Architecturally Sig-

nificant Requirements: A Decision-Centric

Approach”, Proceedings of ICSE’11, May

21-28, 2011, Waikiki, Honolulu, HI, USA, pp.

1126-1127.

[57] Neamtiu, I., Xie, G., and Chen, J., “Towards

a Better Understanding of Software Evolu-

tion: An Empirical Study on Open-Source

Software”, J. of Software: Evolution and

Process, Vol. 25, No. 3, 2013, pp. 193-218.

[58] NF EN 13306, Terminologies de la Mainten-

ance, June 2001.

[59] Niu, N., Su, L. D., Chen, J.-R. C., and Niu,

Z., “Analysis of Architecturally Significant

Requirements for Enterprise Systems”, IEEE

Systems Journal, 2013, pp. 1-8.

[60] OMG(Object Management Group), Busi-

ness Process Model and Notation (BPMN),

Ver. 2.0, OMG, 2011.

[61] Parnas, D. L., “Software Aging”, Procee-

dings of the 16
th
 International Conference

on Principles of Software Engineering, So-

rrento, Italy, 1994, pp. 279-287.

[62] Perry, D. E. and Wolf, A. L., “Foundations

for the Study of Software Architecture”,

ACM Software Engineering Notes, Vol. 17,

No. 4, 1992, pp. 40-52.

[63] PMI, A Guide to the Project Management

Body of Knowledge (5th ed.), PMI, 2013.

[64] Ratkin, S. R., Software Verification and Vali-

dation: A Practitioner’s Guide, Norwood,

MA: Artech House, Inc., 1997.

[65] Riaz, M., Sulayman, M., and Naqvi, H., “Ar-

chitectural Decay during Continuous Soft-

ware Evolution and Impact of ‘Design for

Change’ on Software Architecture”, Procee-

dings of the International Conference on

Advanced Software Engineering and its

Applications, Springer, 2009, pp. 119-126.

[66] Robles, G., Amor, J. J., Gonzalez-Barahona,

J. M., and Herraiz, I., “Evolution and Growth

in large LIBRE Software Projects”, Pro-

ceedings of the International Workshop on

Principles of Software Evolution, 2005, pp.

165-174.

[67] Schulmeyer, G. G. and MacKenzie, G. R.,

Verification and Validation of Modern Soft-

166 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

ware-Intensive Systems, Upper Saddle River,

NJ: Prentice Hall PTR, 2000.

[68] Sneed, H. M., “A Cost Model for Software

Maintenance and Evolution”, Proceedings

of the 20th IEEE International Conference

on Software Maintenance (ICSM’04), 2004.

[69] Stringfellow, C., Amory, C., Potnuri, D.,

Andrews, A., and Geor, M., “Comparison of

Software Architecture Reverse Engineering

Methods”, Information and Software Tech-

nology, Vol. 48, 2006, pp. 484-497.

[70] vanGurp, J. and Bosch, J., “Design Erosion:

Problems and Causes”, Journal of Systems

and Software, Vol. 61, 2002, pp. 105-119.

[71] Vasa, R., Growth and Change Dynamics in

Open Source Software Systems, Ph. D. the-

sis, Swinburne University of Technology,

Melbourne, Australia, 2010.

[72] Yip, S. W. L., Lam, T., Chan, S. K. M., “A

Software Maintenance Survey”, Proceed-

ings of the 1st Asia-Pacific Software Engi-

neering Conference, Tokyo, 1994, pp. 70-79.

Vol.22 No.3 Purposes, Results, and Types of Software Post Life Cycle Changes 167

Author Profile

Seokha Koh

Seokha Koh is the professor

of the Department of MIS,

Chungbuk National University.

His current primary research

areas include Software Quality

Management, Business Process Modeling, Software

Architecture, Project Management, and Software

Engineering.

Man Pil Han

Man Pil Han is the doctoral-

student of the Department of

MIS, Chungbuk National Uni-

versity and CEO of Daesung

Corp/D.S Package. He is inter-

ested in information systems and performance of

small and medium business.

