
Optimization Algorithms for a Two-Machine Permutation Flowshop

with Limited Waiting Times Constraint and Ready Times of Jobs

Seong-Woo Choi*

Abstract

In this research, we develop and suggest branch and bound algorithms for a two-machine permutation

flowshop scheduling problem with the objective of minimizing makespan. In this scheduling problem, after

each job is operated on the machine 1 (first machine), the job has to start its second operation on machine

2 (second machine) within its corresponding limited waiting time. In addition, each job has its corresponding

ready time at the machine 1. For this scheduling problem, we develop various dominance properties and

three lower bounding schemes, which are used for the suggested branch and bound algorithm. In the results

of computational tests, the branch and bound algorithms with dominance properties and lower bounding

schemes, which are suggested in this paper, can give optimal solution within shorter CPU times than the

branch and bound algorithms without those. Therefore, we can say that the suggested dominance properties

and lower bounding schemes are efficient.

Keywords：Scheduling, Permutation Flowshop, Branch And Bound, Limited Waiting Time, Ready Times

1)

Received：2015. 04. 01. Revised : 2015. 04. 20. Final Acceptance：2015. 04. 20.

※ This work was supported by Kyonggi University Research Grant 2011.
 * Department of Business Administration, Kyonggi University, e-mail：swchoi@kyonggi.ac.kr

2 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

1. Introduction

This scheduling problem can be denoted by

F2/ri, max-wait/Cmax in the three-field notation

of Graham et al. [1979], where ri and max-wait

mean that jobs have cannot be operated on the

machine 1 earlier than their ready times and

have to be operated on the machine 2 within a

certain limited time after those jobs are oper-

ated on the machine 1, respectively, and Cmax is

the makespan.

We can found the above scheduling problem

in a sub workstation of semiconductor fab line.

At the workstation (process section) consisting

of continuous clean and diffusion processes in

semiconductor wafer fabrication line, after a che-

mical treatment process for a wafer lot is com-

pleted on a clean machine, the next process for

the wafer lot must be started on a diffusion ma-

chine within a pre-determined time period, and if

the next process for the wafer lots is delayed,

it must be abandoned or re-processed because

the chemical treatment is no longer effective

after the time period [Joo and Kim, 2009]. Such

a time period between the two processes is

called the limited waiting time in scheduling re-

search and the lengths of these time periods

may differ for different wafer lots according to

their chemical characteristics [Joo and Kim, 2009].

In addition, since the above subsystem is not

the first operation of wafer fabrication in gene-

ral, jobs arrive at this workstation dynamically,

that is, jobs (processing of wafer lots) may have

different ready times in the scheduling problem

for the first machine [Choi et al., 2010]. In this

study, we develop scheduling algorithms for

subsystems of a wafer fabrication system, and

hence we (need to) consider the limited waiting

time constraint and ready times.

There are many researches for typical flow-

shop scheduling problem [Chen et al., 2000;

Framinan et al., 2004; Gupta and Stafford, 2006].

However, there are few researches for the flow-

shop scheduling problem with limited waiting

time as follows. Yang and Chern [1995] and

Bouquard and Lente [2006] suggested branch

and bound algorithms with upper bounds and

lower bounds. Also, Joo and Kim [2009] deve-

loped several dominance properties and lower

bounds for a branch and bound algorithm, and

Attar et al. [2013] dealt with hybrid flexible flow-

shop scheduling problem with unrelated parallel

machine and limited waiting times. In addition,

there are many researches for the flowshop

scheduling problems with ready times or re-

lease dates of jobs. Specially, Tadei et al. [1998]

and Potts [1985] suggested branch and bound

algorithm and investigated the worst-case per-

formance of five approximation algorithms for

minimizing makespan on the two-machine flow-

shop with release date, respectively. Also, Hall

[1994] and Chu [1992] proposed a polynomial

approximation scheme and a branch and bound

algorithm for minimizing makespan and total

tardiness on the two-machine flow-shop with

release date, respectively. Choi [2014] suggested

several heuristic algorithms for the two- ma-

chine permutation flowshop scheduling pro-

blem with both of limited waiting time and ready

times. However, there is no research on branch

and bound algorithm for the two-machine per-

mutation flowshop scheduling problem with both

Vol.22 No.2 Optimization Algorithms for a Two-Machine Permutation Flowshop with Limited Waiting Times Constraint and Ready Times of Jobs 3

of limited waiting time and ready times to the

best of our knowledge.

This scheduling problem is NP-hard in the

strong sense, since the two-machine permuta-

tion flowshop scheduling problem with limited

waiting time is NP-hard in the strong sense [Joo

and Kim, 2009; Yang and Chern, 1995], which

is a special case (ready times of jobs are 0) of

this scheduling problem. To develop an efficient

branchand bound algorithm, we develop various

dominance properties and three lower bounding

schemes, and we use three existing heuristic al-

gorithms [Choi, 2015] to get the initial upper

bounds of the branch and bound algorithms.

2. Problem Description

In this scheduling problem, n jobs should be

operated on two-machine flowshop in the order

of machine 1 and then machine 2, and the fol-

lowing assumptions are made in this study.

1) In the two-machine flowshop scheduling pro-

blem, we have a given set of jobs with dif-

ferent ready times, that is, each job can be

operated on the machine 1 at its ready time.

2) The operation times and limited waiting times

of the jobs are known and different from

each other.

3) Each job should start its operation on ma-

chine 2 within its corresponding limited wai-

ting time after the job is operated on the

machine 1.

In this research, only permutation schedules

are considered, that is, operation order of jobs

is same on the both machines. Permutation sche-

dules are dominant in the ordinary two-ma-

chine flowshop scheduling problem with the

objective of minimizing makespan [Baker, 1974;

Choi and Kim, 2007]. However, in the cases of

two-machine scheduling problem with the lim-

ited waiting times and ready times of jobs, per-

mutation schedules are not dominant. The fol-

lowing example may be the case that a non-

permutation schedule is better than the best

among permutation schedules.

Counter example for the dominance of per-

mutations schedules

We assume that four jobs should be sched-

uled, and their processing times, limited waiting

times, and ready times are given in <Table 1>.

As shown in <Figure 1>, the best permutation

schedule can be obtained by sequence (1, 3, 2,

4), while there is a better non-permutation

schedule, in which the sequence on machine 1

is (1, 3, 2, 4) and the sequence on machine 2

is (1, 2, 3, 4).

<Table 1> Processing Times, Limited Waiting Times and Ready

Times for the Example

j = 1 j = 2 j = 3 j = 4

pj1 1 2 3 3

pj2 5 2 1 1

wj 1 0 6 1

rj 0 2 1 6

However, Choi and Kim [2007] described that

permutation schedules are preferred to non-per-

mutation schedules in most real systems be-

cause of the ease of implementation or material

flow management, and non-permutation sche-

dules are not feasible in many cases because of

4 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

(a) Non-permutation schedule (b) Best permutation schedule

<Figure 1> An Example Showing Non-Dominance of Permutation Schedules

technical constraints of material handling sys-

tems. Therefore, in this research, we consider

only permutation schedules.

The following symbols are used in this re-

search.

i, j indices of jobs

k index of machines k = 1, 2

pik operation time of job i on machine k

wi limited waiting time of job i

ri ready time of job i

 partial sequence

 ...m partial schedule obtained with fol-

lowed by jobs i, j, …, m in this order

U set of unscheduled jobs, that is, those

are not included in

c[m]k completion time of the job at the m-th

position in a (partial) schedule on ma-

chine k

Ck() completion time of the last positioned

job in a partial schedule on machine k

With the above symbols, completion time of

each job in a given schedule (sequence) can be

expressed as follows.

c[1]1 = r[1] + p[1]1 (E.1)

c[1]2 = c[1]1 + p[1]2= r[1] + p[1]1 + p[1]2 (E.2)

c[j]1 = max{max(r[j], c[j-1]1) + p[j]1, c[j-1]2-w[j]}

for j = 2,…, n (E.3)

c[j]2 = max{c[j]1, c[j-1]2} + p[j]2

for j = 2, …, n (E.4)

3. Dominance Properties

In this section, we develop dominance prop-

erties to reduce the number of sub-problems to

be considered in the suggested branch and bound

algorithms, that is, we can eliminate partial sche-

dules that are dominated by others in the branch

and bound algorithm [Choi and Kim, 2007].

The developed dominance properties are deve-

loped based on the Johnson’s algorithm [Johnson,

1954] for two-machine permutation flowshop

scheduling problems (in the Johnson’s algo-

rithm, job i precedes job j in an optimal se-

quence if min{pi1, pj2} min{pi2, pj1}) and proper-

ties suggested by Joo and Kim [2009] and Tadei

et al. [1998]. Joo and Kim [2009] suggested do-

minance properties for a two-machine flowshop

with the limited waiting times of jobs and Tadei

et al. [1998] suggested dominance properties for

a two-machine flowshop with the ready times

of jobs.

Proposition 1 : There is a partial schedule σ,

and if we have two jobs i and j (i∉σ, j∉σ) sa-

tisfying the three conditions such as (C.1) C2(σ)

≤ ri ≤ rj, (C.2) min{pi1, pj2} ≤ min{pi2, pj1} and

Vol.22 No.2 Optimization Algorithms for a Two-Machine Permutation Flowshop with Limited Waiting Times Constraint and Ready Times of Jobs 5

(C.3) pi2 ≤ pj1 + wj, there is an optimal solution

among schedules that start with σij (that is, σij

dominates σji).

Proof : We can complete this proof by showing

that Ck(σij) ≤ Ck(σji) for k = 1, 2. The following

equalities [(A.1)-(A.8)] are the obtained comple-

tion times (of jobs i and j in schedules σij and

σji) from equalities (E.1)-(E.4) at the end of

section 2 :

C1(σi) = max{max(ri, C1(σ))+pi1, C2(σ)-wi} (A.1)

C2(σi) = max{C1(σi), C2(σ)}+pi2 (A.2)

C1(σij) = max{max(rj, C1(σi))+pj1, C2(σi)-wj}(A.3)

C2(σij) = max{C1(σij), C2(σi)}+pj2 (A.4)

C1(σj) = max{max(rj, C1(σ))+pj1, C2(σ)-wj} (A.5)

C2(σj) = max{C1(σj), C2(σ)}+pj2 (A.6)

C1(σji) = max{max(ri, C1(σj))+pi1, C2(σj)-wi}(A.7)

C2(σji) = max{C1(σji), C2(σj)}+pi2 (A.8)

In the first phase, we show C1(σij) ≤ C1(σji).

Since the condition (C.1) C2(σ) ≤ ri ≤ rj of

this proposition, (A.1), (A.2), (A.5) and (A.6)

can be reduced to C1(σi) = ri+pi1, C2(σi) = ri+pi1+

pi2, C1(σj) = rj+pj1 and C2(σj) = rj+pj1+pj2, respec-

tively.

In addition, from (A.3), we have

C1(σij) = max{max (rj, ri+pi1)+pj1, ri+pi1+pi2-wj}

= max{rj+pj1, ri+pi1+pj1, ri+pi1+pi2-wj}.

Here, from the condition (C.3) pi2 ≤ pj1+wj of

this proposition, we know ri+pi1+pi2-wj ≤ ri+pi1

+pj1, and therefore, we have

 C1(σij) = max{rj+pj1, ri+pi1+pj1} (A.9)

Also, from the reduced (A.5), the reduced

(A.6) and (A.7), we have

C1(σji) = max{max(ri, C1(σj))+pj1,

C2(σj)-wi}

 = max{rj+pj1+pi1, rj+pj1+pj2-wi} (A.10)

From (A.9) and (A.10), we have C1(σij) ≤

C1(σji).

In the second phase, we show C2(σij) ≤

C2(σji).

From the reduced (A.2), (A.4), and (A.9), we

have

C2(σij) = max{C1(σij), C2(σi)}+pj2 (A.11)

 = max{max{rj+pj1, ri+pi1+pj1},

ri+pi1+pi2}+pj2,

 = max{rj+pj1+pj2, ri+pi1+pj1+pj2,

ri+pi1+pi2+pj2}

 ≡ max(A1, A2, A3),

where A1 = rj+pj1+pj2, A2 = ri+pi1+pj1+pj2 and

A3 = ri+pi1+pi2+pj2.

From the reduced (A.6), (A.8), and (A.10), we

have

C2(σji) = max{C1(σji), C2(σj)}+pi2

 = max{max{rj+pj1+pi1, rj+pj1+pj2- wi},

rj+pj1+pj2}+pi2

 = max{rj+pj1+pi1+pi2, rj+pj1+pj2-wi+pi2,

rj+pj1+pj2+pi2}

 ≡ max{B1, B2, B3}, (A.12)

where B1 = rj+pj1+pi1+pi2, B2 = rj+pj1+pj2-wi+pi2

and B3 = rj+pj1+pj2+pi2.

6 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

First, we have A1 ≤ B3, easily.

Second, we consider two cases to show max

(A2, A3) ≤ max{B1, B2, B3}.

Case 1 : If min{pi1, pj2} = pi1, that is, we have

pi1 ≤ min{ pi2, pj1} from the condition

(C.2) min{pi1, pj2} ≤ min{pi2, pj1} of

this proposition, in this case, we have

A2 ≤ B3 and A3 ≤ B3 since the condi-

tions of pi1 ≤ min{pi2, pj1} and ri ≤ rj.

Case 2 : If min{pi1, pj2} = pj2, that is, we have

pj2 ≤ min{pi2, pj1} from the condition

(C.2) min{pi1, pj2} ≤ min{pi2, pj1} of

this proposition, in this case, we have

A2 ≤ B1 and A3 ≤ B1 since the con-

ditions of pj2 ≤ min{pi2, pj1} and ri ≤ rj.

In conclusion, by showing Ck(σij) ≤ Ck(σji)

for k = 1, 2, the proof is completed. ■

Proposition 2 : There is a partial schedule σ,

and if we have two jobs i and j (i∉σ, j∉σ) satis-

fying the four conditions such as (C.4) ri ≤ C1(σ),

(C.2) min{pi1, pj2} ≤ min{pi2, pj1}, (C.5) C2(σ)-

C1(σ) ≤ pi1 and (C.3) pi2 ≤ pj1+wj, there is an

optimal solution among schedules that start with

σij (that is, σij dominates σji).

Proof : If we can show that Ck(σij) ≤ Ck(σji)

for k = 1, 2, this completes the proof. We use

equalities (A.1)-(A.8) obtained in the proof of

Proposition 1.

In the first phase, we show C1(σij) ≤ C1(σji).

Since the conditions (C.4) ri ≤C1(σ) and (C.5)

C2(σ)-C1(σ) ≤ pi1 of this proposition, (A.1) and

(A.2) can be reduced to C1(σi) = C1(σ)+pi1 and

C2(σi) = C1(σ)+pi1+pi2, respectively.

From the condition (C.3) pi2 ≤ pj1+wj of this

proposition and (A.3), we have

C1(σij) = max{max(rj, C1(σ)+pi1)+pj1, (A.13)

C1(σ)+pi1+pi2-wj}

 = max{rj+pj1, C1(σ)+pi1+pj1,

C1(σ)+pi1+pi2-wj}

 = max{ⓐrj+pj1, ⓑC1(σ)+pi1+pj1}

Also, from the condition (C.4) ri ≤C1(σ) of

this proposition, (A.5), (A.6) and (A.7), we have

C1(σji) = max{max(ri, C1(σj))+pi1, C2(σj)-wi}

 = max{C1(σj)+pi1, C1(σj)+pj2-wi,

C2(σ)+pj2-wi}

 = max{ⓒrj+pj1+pi1, ⓓC1(σ)+pj1+pi1,

C2(σ)-wj+pi1, rj+pj1+pj2-wi,

C1(σ)+pj1+pj2-wi,

C2(σ)-wj+pj2-wi,

C2(σ)+pj2-wi} (A.14)

From (A.13) and (A.14), we have C1(σij) ≤

C1(σji) since ⓐ rj+pj1 < ⓒ rj+pj1+pi1 and ⓑ C1(σ)

+pi1+pj1 =ⓓ C1(σ)+pj1+pi1.

In the second phase, we show C2(σij) ≤ C2(σji).

From the reduced (A.2), (A.4), and (A.14),

we have

C2(σij) = max{C1(σij), C2(σi)}+pj2 (A.15)

 = max{rj+pj1, C1(σ)+pi1+pj1,

C1(σ)+pi1+pi2}+pj2,

 = max{rj+pj1+pj2, C1(σ)+pi1+pj1+pj2,

C1(σ)+pi1+pi2+pj2}

 ≡ max(A1, A2, A3)

Vol.22 No.2 Optimization Algorithms for a Two-Machine Permutation Flowshop with Limited Waiting Times Constraint and Ready Times of Jobs 7

where A1 = rj+pj1+pj2, A2 = C1(σ)+pi1+pj1+pj2 and

A3 = C1(σ)+pi1+pi2+pj2.

From (A.5), (A.6), (A.8), and (A.14), we have

C2(σj) = max{C1(σj), C2(σ)}+pj2 (A.16)

 = max{max{max(rj, C1(σ))+pj1,

C2(σ)-wj}, C2(σ)}+pj2

 = max{rj+pj1+pj2, C1(σ)+pj1+pj2,

C2(σ)-wj+pj2, C2(σ)+pj2}

From (A.8), (A.14) and (A.16), we have

C2(σji) = max{C1(σji), C2(σj)}+pi2 (A.17)

 = max{rj+pj1+pi1+pi2,

C1(σ)+pj1+pi1+pi2,

C2(σ)-wj+pi1+pi2, rj+pj1+pj2-wi+pi2,

C1(σ)+pj1+pj2-wi+pi2,

C2(σ)-wj+pj2-wi+pi2,

C2(σ)+pj2-wi+pi2, rj+pj1+pj2+pi2,

C1(σ)+pj1+pj2+pi2,

C2(σ)-wj+pj2+pi2,

C2(σ)+pj2+pi2}

 ≡ max{B1, B2, B3, B4, B5, B6, B7, B8,

B9, B10, B11}

 ≡ max{B1, B2, B3, B4, B5, B6, B7, B8,

B9, B11}

where B2 = C1(σ)+pj1+pi1+pi2, B8 = rj+pj1+pj2+pi2

and B9 = C1(σ)+pj1+pj2+ pi2. Here, B10 is elimi-

nated since B10 cannot be larger than B11.

First, we have A1 ≤ B8, easily.

Second, we consider two cases to show max

(A2, A3) ≤ max B2, B9}.

Case 1 : If min{pi1, pj2} = pi1, that is, we have

pi1 ≤ min{pi2, pj1} from the condition

(C.2) min{pi1, pj2} ≤ min{pi2, pj1} of

this proposition, in this case, we have

A2≤ B9 and A3 ≤ B9.

Case 2 : If min{pi1, pj2} = pj2, that is, we have

pj2 ≤ min{pi2, pj1} from the condition

(C.2) min{pi1, pj2} ≤ min{pi2, pj1} of

this proposition, in this case, we have

A2 ≤ B2 and A3 ≤ B2.

As a result, we have Ck(σij) ≤ Ck(σji) for k =

1, 2, and the proof is completed. ■

Proofs for the following propositions 3～5 are

not shown in this paper, since their proofs are

similar to those for propositions 1～2.

Proposition 3 : There is a partial schedule σ,

and if we have two jobs i and j (i∉σ, j∉σ) sa-

tisfying the four conditions such as (C.4) ri ≤

C1(σ), (C.2) min{pi1, pj2} ≤ min{pi2, pj1}, (C.6)

C2(σ)-C1(σ) ≤ pi1+wj and (C.7) C2(σ)+pi2-C1(σ)-

pi1 ≤ pj1+wj, there is an optimal solution among

schedules that start with σij (that is, σij domi-

nates σji).

Proposition 4 : There is a partial schedule σ,

and if we have two jobs i and j (i∉σ, j∉σ) sa-

tisfying the five conditions such as (C.8) C1(σ)

≤ ri ≤ C2(σ), (C.9) ri ≤ rj, (C.2) min{pi1, pj2}

≤ min{pi2, pj1}, (C.10) C2(σ) ≤ ri+pi1 and (C.11)

pi2 ≤ pj1+wj, there is an optimal solution among

schedules that start with σij (that is, σij domi-

nates σji).

8 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Proposition 5 : There is a partial schedule σ,

and if we have two jobs i and j (i∉σ, j∉σ) sa-

tisfying the five conditions such as (C.8) C1(σ)

≤ ri ≤ C2(σ), (C.9) ri ≤ rj, (C.2) min{pi1, pj2} ≤

min{pi2, pj1}, (C.12) C2(σ) ≤ ri+pi1+wj and (C.13)

C2(σ)+pi2-ri-pi1 ≤ pj1+wj, there is an optimal

solution among schedules that start with σij

(that is, σij dominates σji).

Proposition 6 : If pj*1 ≤ pj*2 ≤ mini≠j*{pi1},

where j* is the job with the minimum process-

ing time on machine 1 (j* = arg mini{pi1}) and

the minimum ready time (j* = arg mini{ri})

among all jobs, we have an optimal schedule

with job j* positioned in the first order.

Proof : First, let’s assume that we have an op-

timal schedule without job j* positioned in the

first order. Then, we can express the optimal

schedule as σ1 j*σ2, where σ1 and σ2 are partial

schedules, and σ1 is non-empty partial sequence.

We can prove this proposition by showing Ck

(j*σ1σ2) ≤ Ck(σ1 j*σ2) for any arbitrary σ1 and

σ2 for k = 1, 2. The completion times of job j*

(the last job) in schedule σ1 j* on machine 1 and

2 can be expressed as the following equations.

Since rj* ≤ C1(σ1) from the condition of j* =

arg mini{ri},

 C1(σ1 j*) = max{max(rj*, C1(σ1))+pj*1, (A.18)

C2(σ1)-wj*}

 = max{C1(σ1)+pj*1, C2(σ1)-wj*}

 and

 C2(σ1 j*) = max{C1(σ1 j*), C2(σ1)}+pj*2 (A.19)

On the other hand, since the condition of pj*2

≤ mini≠j*{ pi1}, the second job in j*σ1 (that is,

first job in σ1 of j*σ1) can be started on machine

2 instantly after its first operation (on machine

1) is completed. Therefore, the completion times

of jobs in σ1 of j*σ1 on each machine can be

delayed at most to pj*1 than those in σ1 because

of the condition of j* = arg mini{ri}. That is, we

have

C1(j*σ1) ≤ pj*1+C1(σ1) (A.20)

and

C2(j*σ1) ≤ C2(σ1)+pj*1 (A.21)

From (A.18) and (A.20), we have

C1(j*σ1) ≤ C1(σ1 j*) since pj*1+C1(σ1)

≤ max{ C1(σ1)+pj*1, C2(σ1)-wj*} (A.22)

In addition, From (A.19), (A.21) and the con-

dition of pj*1 ≤ pj*2, we have

C2(j*σ1) ≤ C2(σ1 j*) since C2(σ1)+pj*1

 ≤ max{C1(σ1 j*), C2(σ1)}+pj*2 (A.23)

From (A.22) and (A.23), Ck(j*σ1σ2) ≤ Ck(σ1

j*σ2) for k = 1, 2. This proof is completed. ■

From proposition 6, the following Corollary

holds :

Corollary 1 : Given a partial schedule σ, If pj*1

≤ pj*2 ≤ mini≠j*{pi1}, where j* = arg mini{pi1},

j* = arg mini{ri}, i∉σ, j∉σ, then schedules that

start with σj* dominate the others.

Vol.22 No.2 Optimization Algorithms for a Two-Machine Permutation Flowshop with Limited Waiting Times Constraint and Ready Times of Jobs 9

Proposition 7 : If pj*2 ≤ pj*1 ≤ mini≠j*{pi2},

where j* = arg mini{pi2} and j* = arg maxi{ri},

we have an optimal schedule with job j* posi-

tioned in the last order.

Proof : First, let’s assume that we have an op-

timal schedule without job j* positioned in the

last order. Then, we can express the optimal

schedule as σ1 j*σ2, where σ1 and σ2 are partial

schedules, and σ1 is non-empty partial sequence.

We can prove this proposition by showing C2(σ

1σ2 j*) ≤ C2(σ1 j*σ2) for any arbitrary σ1 and σ2.

From C1(σ1) ≤ C1(σ1 j*) and C2(σ1) ≤ C2(σ1 j*),

we know Ck(σ1σ2) ≤ Ck(σ1 j*σ2) for k = 1, 2.

In addition, the completion times of job j*

(the last job) in schedule σ1σ2 j* on the machine

1 and 2 can be expressed as the following

equations.

C1(σ1σ2 j*) = max{max(rj*, C1(σ1σ2))

+pj*1, C2(σ1σ2)-wj*} (A.24)

and

 C2(σ1σ2 j*) = max{C1(σ1σ2 j*),

 C2(σ1σ2)}+pj*2 (A.25)

From (A.24) and (A.25), we have

C2(σ1σ2 j*) = max{rj*+pj*1, C1(σ1σ2)+pj*1,

C2(σ1σ2)-wj*,

C2(σ1σ2)}+pj*2

 = max{rj*+pj*1, C1(σ1σ2)+pj*1,

C2(σ1σ2)}+pj*2

Here, from the condition of pj*1 ≤ mini≠j*{

pi2}, we have C1(σ1σ2)+pj*1 ≤ C2(σ1σ2).

Therefore, C2(σ1σ2 j*) = max{rj*+pj*1, C2(σ1σ

2)}+pj*2

Case 1 : If rj*+pj*1 ≤ C1(σ1σ2), C2(σ1σ2 j*) = C2(σ

1σ2)+pj*2

Case 2 : Otherwise(C1(σ1σ2) < rj*+pj*1), C2(σ1σ2

j*) = rj*+pj*1+pj*2

In the case 1, the completion times of jobs in

σ2 of σ1 j*σ2 on the second machine can be

delayed at least to pj*2 than those in σ2 of σ1σ2

j* because of the condition of j* = arg maxi{ri}

and pj*2 ≤ pj*1. That is, we have

 C2(σ1σ2 j*) = C2(σ1σ2)+pj*2 ≤

C2(σ1 j*σ2) (A.26)

On the other hand, in the case 2, the com-

pletion times of jobs in σ2 of σ1 j*σ2 on the first

machine can be started at the time of rj*+pj*1.

Therefore, jobs in σ2 of σ1 j*σ2 can be completed

later than the time of rj*+pj*1+pj*2, obviously.

That is, we have

C2(σ1σ2 j*) = rj*+pj*1+pj*2 < C2(σ1 j*σ2) (A.27)

From (A.26) and (A.27), we have C2(σ1σ2 j*)

≤ C2(σ1 j*σ2). This proof is completed. ■

4. Lower Bounds

In this paper, we present several lower boun-

ding schemes on the makespan of a partial sche-

dule to be used in the suggested branch and

bound algorithms. The following two lower bounds

10 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

are developed based on a machine-based lower

bound showed in Baker [1974], and in those, in

addition, limited waiting time and ready times

are considered.

The first is

∈

∈
.

The front formula means the minimum time

when the operations of unscheduled jobs can be

started on the second machine, and the back

formula means the total processing times (the

sum of processing times) of unscheduled jobs

on the second machine.

The second is

∈

∈

∈

The front formula means the minimum time

when the operations of unscheduled jobs can be

started on the first machine, and the back for-

mula means the total processing time of un-

scheduled jobs on machine 1. In this paper, we

describe this lower bound, max(LB1, LB2) as

LBM.

We use another lower bound based on the

following proposition 8 suggested by Choi and

Kim [2007] for the two-machine permutation

flowshop. In the proposition 8, σπ is (partial)

schedule obtained with σ followed by partial

schedule π.

Proposition 8 [Choi and Kim 2007]. Let σ be

a partial schedule to be placed at the front of

a complete schedule for the two-machine per-

mutation flowshop scheduling problem with

the objective of minimizing makespan. Then

the makespan of any complete schedule star-

ting with σ cannot be less than C2(σπ*), where

π* is a partial schedule obtained by applying

the Johnson’s rule (Johnson 1954) to the set

of jobs that are included in U.

Here, a lower bound can be obtained by using

the proposition 8 and assuming that there are

no both limited waiting time constraints and

ready times of jobs in U, and this lower bound

is described as LBC&K in this paper.

5. Branch and Bound Algorithm

The main objective of the research is pre-

senting efficient branch and bound algorithms

for the considered scheduling problem in this

paper. The architecture of this branch and bound

algorithm is based on the typical branch and

bound algorithm of Baker [1974]. That is, in the

suggested branch and bound algorithms, a branch

and bound tree is constructed to generate all

possible schedules (sequences), that is, a node

in the branch and bound tree means its corres-

ponding partial sequence (schedule), and a node

at the kth depth in the branch and bound tree

means its corresponding partial schedule for the

first-positioned k jobs in a complete schedule

[Choi and Kim 2007].

In these branch and bound algorithms, for

calculating initial upper bounds in the branch

and bound algorithms, we use several existing

heuristic algorithms, that is, modified Johnson’s

Vol.22 No.2 Optimization Algorithms for a Two-Machine Permutation Flowshop with Limited Waiting Times Constraint and Ready Times of Jobs 11

algorithm (which is develop algorithm based on

the Johnson’s algorithm [Johnson, 1954] for twp-

machine permutation flowshop scheduling pro-

blem with the objective of minimizing make-

span), modified NEH algorithm (which is de-

veloped algorithm based on the algorithm of

Nawaz, Enscore and Ham [1983] for m-ma-

chine permutation flowshop scheduling problems

and called as MNEH) and Greed Local Search

algorithm (which is developed algorithm based

on an extended neighborhood search algorithm

of Kim [1993] for m-machine permutation flow-

shop scheduling problem with the objective of

minimizing mean tardiness and called as GLS)

suggested by Choi [2015]. Choi [2015] sug-

gested these heuristic algorithm for the two-

machine permutation flowshop scheduling pro-

blem with limited waiting times and ready times,

which is same with the scheduling problem of

this research. We use the best one among solu-

tions of the above heuristic algorithms as the

initial upper bounds in the branch and bound

algorithms.

In addition, when we generate some child

nodes from a selected parent node, based on the

developed dominance properties in the section 3,

we prune the child nodes dominated by others.

Also, for the nodes that are not pruned by the

dominance properties, we compute the presented

two bounds (LBM and LBC&K), and we fathom

the corresponding nodes without lower bounds

less than the current upper bound. Finally,

when we construct the branch and bound tree,

the depth and first rule is adopted, in which we

select a node with the biggest number of jobs

among the considered nodes (partial schedules)

for the next branching.

6. Computational Tests

To evaluate efficiencies of the developed do-

minance properties and lower bounding schemes

and the suggested branch and bound algori-

thms, we performed the experiments on sets of

randomly generated test problems. The tests

were done on a personal computer with the

CPU of 2.6 GHz clock speed, and the algorithms

were coded by using C++ programming lan-

guage.

For the computational tests, the processing

times of jobs were generated from DU(1, 50),

where DU(a, b) denotes the discrete uniform

distribution with a range of [a, b], and limited

waiting times of the jobs were generated from

DU(1, 100). Also, ready times of the jobs were

generated from DU(0, LBC&K), in which LBC&K

is described in the section 4, and here, when

LBC&K is calculated for generating ready times,

we assume that σ is empty sequence (σ =). In

addition, the utilization of a bottleneck work-

station (process section) is expected to be close

to 100%, and note that there are always job to

be processed at the workstation (which is one

of bottleneck process sections in general) if the

ready times are generated by the above way.

Here, note that the ratios of processing times,

limited waiting times and ready times of jobs

reflect the real situation at the two-machine

flowshop consisting of continuous clean and

diffusion processes in a real fab. Computation

time required for branch and bound algorithms

(we tested several versions of the branch and

bound algorithm) was limited to 3600 seconds

(1 hour) of CPU time for each test problem to

12 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

<Table 2> Effectiveness of the Lower Bounds

n

ACPUT
†

ARCPUT*

(MCPUT
‡
)

BB1 BB2 BB3 BB1/BB3 BB2/BB3

10
0.01

(0.01)
0.01

(0.01)
0.01

(0.01)
1.00 1.00

20
184.45
(0.07)

183.80
(0.05)

183.80
(0.05)

2.05 1.00

30
1329.44
(77.86)

1253.62
(63.52)

1158.08
(49.68)

3.30 1.48

40
1694.15
(474.51)

1347.74
(118.50)

1309.69
(76.32)

278.93 1.28

50
1854.48

(2072.93)
(1786.80
(1621.37)

1676.55
(547.87)

215.26 1.54

†
average CPU time or lower bound on the average CPU time, which was computed assuming that the CPU time
for an instance that has not been solved to optimality within 3600 seconds is 3600 seconds [Joo and Kim, 2009].

‡
median CPU time.

*
average ratio of CPU times of a branch and bound algorithm in comparison with those of BB3.

avoid excessive computation times required for

the tests. Therefore, in some instances, optimal

solutions could not be found within the CPU

time limit of 1 hour.

For evaluations of branch and bound algori-

thms, 100 problems were randomly generated,

20 problems for each of four levels (10, 20, 30,

40 and 50) for the number of jobs. In tables 3-6,

for an instance, the CPU time for a branch and

bound algorithm means the duration (in se-

conds counter) to find optimal solution, and if

a branch and bound algorithm cannot find the

optimal solution within 3,600 seconds, its dura-

tion (CPU time) is 3,600 seconds. For a branch

and bound algorithm, as ACPUT† and MCPUT‡

are increased, it means that performance of the

branch and bound algorithm gets worse. In

addition, for an instance, the ratio of CPU time

for a branch and bound algorithm means its

relative ratio of CPU time in comparison with

that of another B&B algorithm (BB3), and the

average ratio of CPU time for a branch and

bound algorithm is mean value of the ratio values

of CPU times for 20 instances for each of four

levels (10, 20, 30, 40 and 50)for the number of

jobs. For example, for an instance, the ratio of

CPU time of “BB1/BB3” is the relative ratio of

CPU time of BB1 in comparison with that of

BB3 (CPU time of BB1/CPU time of BB3). That

is, as ARCPUT* of “BB1/BB3” is increased, it

means the performance of BB1 gets worse in

comparison with BB3.

Firstly, we compared three branch and bound

algorithms (BB1, BB2 and BB3) with different

lower bounds. For fathoming the branch and

bound trees, BB1, BB2 and BB3 use LBM, LBC&K

and max(LBM, LBC&K) as lower bounding sche-

mes, respectively. In BB1, BB2 and BB3, we use

all the suggested dominance properties (proposi-

tions 1～7) for reducing the number of generated

nodes, and we use the best one among solutions

of the three heuristic algorithms [Choi, 2015] as

initial upper bounds. As can be seen from Table

2, BB3 worked better than BB1 and BB2 in terms

Vol.22 No.2 Optimization Algorithms for a Two-Machine Permutation Flowshop with Limited Waiting Times Constraint and Ready Times of Jobs 13

<Table 3> Effectiveness of the Dominance Properties

n

ACPUT
†

ARCPUT*

(MCPUT
‡
)

BB3 BB4 BB4/BB3

10
0.01

0.01

0.01

0.01
1.000

20
183.80

0.05

200.53

0.05
1.564

30
1158.08

49.68

1289.98

16.07
1.402

40
1309.69

76.32

1350.04

96.60
1.329

50
1676.55

547.87

1735.26

1130.00
1.018

†
,

‡
,

*
See the footnotes of <Table 4>.

<Table 4> Effectiveness of the initial upper bound

n

ACPUT
†

ARCPUT*

(MCPUT
‡
)

BB3 BB4 BB5/BB3

10
0.01

0.01

0.01

0.01
1

20
183.80

0.05

374.72

1.24
785.1

30
1158.08

49.68

1375.44

180.94
674.7

40
1309.69

76.32

2460.27

3600.01
6647.4

50 1676.55 2409.15 5446.6

†
,

‡
,

*
See the footnotes of <Table 4>.

<Table 5> Summary of the Tests on the Branch and Bound Algorithms

n

ACPUT
†

NINS
#

(MCPUT
‡
)

BB1 BB2 BB3 BB4 BB5 BB1 BB2 BB3 BB4 BB5

10
 0.01

†

(0.01)
‡

0.01

(0.01)

0.01

(0.01)

0.01

(0.01)

0.01

(0.01)
0 0 0 0 0

20
184.45

(0.07)

183.80

(0.05)

183.80

(0.05)

200.53

(0.05)

374.72

(1.24)
1 1 1 1 2

30
1329.4

(77.8)

1253.6

(63.5)

1158.0

(49.6)

1289.9

(16.1)

1375.4

(180.9)
7 6 6 6 7

40
1694.1

(474.5)

1347.7

(118.5)

1309.6

(76.32)

1350.0

(96.60)

2460.2

(3600)
9 7 7 7 13

50
1854.4

(2072)

1786.8

(1621)

1676.5

(547.8)

1735.2

(1130)

2409.1

(3600)
10 9 9 9 13

†
,

‡
,

*
See the footnotes of <Table 4>.

#
 number of problems among 20 problems that optimal solution cannot be obtained within 3600s.

of both average CPU time and median CPU time.

In addition, as seen in term of average ratio of

CPU time, there are less significant differences bet-

ween BB2 and BB3 than those between BB1 and

BB3, and it means that LBC&K outperforms LBM.

Next, to show the effectiveness of the domi-

nance properties, we solve the given instances

with two branch and bound algorithms, BB3

with all dominance properties and BB4 (BB3-

DPs), in which none of the dominance proper-

ties is used. The results of the test are given

in <Table 3>. When the suggested dominance

properties were not used, CPU time was in-

creased significantly.

Thirdly, we test the effectiveness of the initial

upper bound from the heuristic algorithms pro-

posed by Choi [2015]. For this test, we solve the

given problems with two branch and bound

algorithms, BB3, in which the heuristic algorithms

of Choi [2015] are used for initial upper bound

14 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

<Table 6> Analysis of Variance (for CPU times)

Source of variation
Degrees of

freedom

Sum of

squared error

Mean squared

error
 F**

Algorithm (A) 4 13746175.9 3436544.0 2.6**

Number of jobs (N) 4 287521494.1 71880373.5 55.3**

A×N 16 314726374.2 19670398.4 15.1**

Error 475 617277227.8 1299531.0

Total 499 1233271272 　 　

**
Different effects with the significance level of 0.05.

as stated above, and BB5 (BB3-initial upper

bound), in which none of initial upper bounds

is used, that is, a random solution is generated

for initial upper bound in each instance. The

results of the test are given in <Table 4>. When

the initial upper bound were not used, CPU time

was increased very much since BB5 cannot give

optimal solutions in many instances as seen in

<Table 6>.

In summary, we shows the performances of

five branch and bound algorithms (BB1-BB5) in

<Table 5>. In addition, in the table, we add the

number of problems among 20 problems that

optimal solution cannot be obtained within 3600s.

As you see in <Table 6>, the lower bounding

schemes, the dominance properties (proposed in

this research) and initial upper bounds are effec-

tive, and when the branch and bound algorithm

does not use the dominance properties, lower

bounding schemes and initial upper bounds, the

CPU times are increased significantly.

Finally, to see the differences in the perfor-

mance of the algorithms, we performed an ANOVA

(analysis of variance) for CPU times of five

branch and bound algorithms (BB1-BB5). Results

are given in <Table 6>. Note that performances

of algorithms (BB1-BB5) are statistically diffe-

rent at the significance level of 0.05. In addition,

CPU times of five branch and bound algorithms

are affected very much by problem size (num-

ber of jobs), and it is very natural situation since

the CPU times of algorithms are increased as

the problem size becomes large.

7. Conclusion

In this research, we suggest branch and bound

algorithms for a two-machine permutation flow-

shop scheduling problem with the objective of

minimizing makespan. In this permutation flow-

shop, after each job is operated on the machine

1 (first machine), the job has to start its second

operation on machine 2 (second machine) within

its corresponding limited waiting time. In addi-

tion, each job has its corresponding ready time

at the machine 1. For this scheduling problem,

we develop various dominance properties and

three lower bounding schemes, which are used

for the suggested branch and bound algorithm.

In the results of computational tests, we can

show that the branch and bound algorithm is

efficient and can give optimal solutions (for

problem size of 30～50 jobs) in a reasonable

amount of CPU times.

We can extended this research in several di-

rections. For example, we can modify the sug-

Vol.22 No.2 Optimization Algorithms for a Two-Machine Permutation Flowshop with Limited Waiting Times Constraint and Ready Times of Jobs 15

gested lower bounding schemes and dominance

properties for the m-machine permutation flow-

shop problem with limited waiting times and

ready times. In addition, more general cases,

that is, parallel machines in each stage of m-

machine flowshop with limited waiting times

and ready times, can be considered.

References

 [1] Attar, S. F., Mohammadi, M., and Tavakkoli-

Moghaddam, R., “Hybrid flexible flowshop

scheduling problem with unrelated parallel

machines and limited waiting times”, Inter-

national Journal of Advanced Manufacturing

technology, Vol. 68, 2013, pp. 1583-1599.

 [2] Baker, K. R., Introduction to sequencing and

scheduling, New York : John Wiley and Sons,

1974.

 [3] Bouquard, J. L. and Lent́ e, C., “Two-machine

flow shop scheduling problems with minimal

and maximal delays”, A Quarterly Journal

of Operations Research, Vol. 4, 2006, pp.

15-28.

 [4] Chen, T. C. E., Gupta, J. N. D., and Wang,

G., “A review of flowshop scheduling re-

search with setup times”, Production and

Operations Management, Vol. 9, 2000, pp.

283-302.

 [5] Choi, S. W., “Heuristics for two-machine

re-entrant flowshop with limited waiting

times and ready times”, Submitted to Korea

Contents Spring Conference, May, 2015.

 [6] Choi, S. W. and Kim, Y. D., “Minimizing make-

span on a two-machine re-entrant flow-

shop”, Journal of the Operational Research

Society, Vol. 58, 2007, pp. 972-981.

 [7] Choi, S. W., Lim, T. K., and Kim, Y. D.,

“Heuristics for scheduling wafer lots at the

deposition workstation in a fab”, Journal of

the Korean Institute of Industrial Engineers,

Vol. 36, 2010, pp. 125-137.

 [8] Chu, C., “A branch and bound algorithm to

minimize total tardiness with different re-

lease times”, Naval Research Logistics, Vol.

39, 1992, pp. 265-283.

 [9] Framinan, J. M., Gupta, J. N. D., and Leisten,

R., “A review and Classification of heuristics

for permutation flow-shop scheduling with

makespan objective”, Journal of Operational

Research Society, Vol. 55, 2004, pp. 1243-

1255.

[10] Graham, R. L., Lawler, E. L., Lenstra, J. K.,

and Rinnooy Kan, A. H. G., “Optimization

and approximation in deterministic sequenc-

ing and scheduling : A survey”, Annals of

Discrete Mathematics, Vol. 5, 1979, pp. 287-

326.

[11] Gupta, J. N. D. and Stafford, J. E. F., “Flow-

shop scheduling research after five decades”,

European Journal of Operational Research,

Vol. 169, 2006, pp. 699-711.

[12] Hall, L. A., “A polynomial approximation

scheme for a constrained flow shop schedul-

ing problem”, Mathematics of Operations

research, Vol. 19, 1994, pp. 68-85.

[13] Johnson, S. M., “Optimal two- and three-

stage production schedules with setup times

included”, Naval Research Logistics Quar-

terly, Vol. 1, 1954, pp. 61-68.

[14] Joo, B. J. and Kim, Y. D., “A branch-and-

bound algorithm for a two-machine flow-

16 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

shop scheduling problem with limited wait-

ing time constraints”, Journal of the Opera-

tional Research Society, Vol. 60, 2009, pp.

572-582.

[15] Kim, Y. D., “Heuristics for flowshop schedul-

ing problems minimizing mean tardiness”,

Journal of Operational Research Society, Vol.

44, 1993, pp. 19-28.

[16] Nawaz, M., Enscore, E. E., and Ham, I., “A

heuristic algorithm for the m-machine, n-job

flow-shop sequencing problem”, Omega,

Vol. 11, 1983, pp. 91-95.

[17] Potts, C. N., “Analysis of heuristics for

two-machine flow-shop sequencing subject

to release dates”, Mathematics of Operations

research, Vol. 10, 1985, pp. 576-584.

[18] Tadei, R., Gupta, J. N. D., Della, C. F., and

Cortesi, M., “Minimizing makespan in the

two-machine flow-shop with release times”,

Journal of Operational Research Society,

Vol. 49, 1998, pp. 77-85.

[19] Yang, D. L. and Chern, M. S., “A two-machine

flowshop sequencing problem with limited

waiting time constraints”, Computers and

Industrial Engineering, Vol. 28, 1995, pp.

63-70.

Vol.22 No.2 Optimization Algorithms for a Two-Machine Permutation Flowshop with Limited Waiting Times Constraint and Ready Times of Jobs 17

Author Profile

Seong-Woo Choi

Seong-Woo Choi is an as-

sistant professor at the Depart-

ment of Business and Admini-

stration, Kyonggi University.

He received the B.S., M.S. and

Ph.D. degrees in Industrial Engineering from

KAIST. His research areas include design and

operation of manufacturing systems and opera-

tions scheduling. Before joining the faculty at

Kyonggi University, he had worked for Sam-

sung Electronics Company as a senior engi-

neer at the systems technology group in the

semiconductor business division and for Hoseo

University.

