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Abstract

In this research, we develop and suggest branch and bound algorithms for a two-machine permutation 

flowshop scheduling problem with the objective of minimizing makespan. In this scheduling problem, after 

each job is operated on the machine 1 (first machine), the job has to start its second operation on machine 

2 (second machine) within its corresponding limited waiting time. In addition, each job has its corresponding 

ready time at the machine 1. For this scheduling problem, we develop various dominance properties and 

three lower bounding schemes, which are used for the suggested branch and bound algorithm. In the results 

of computational tests, the branch and bound algorithms with dominance properties and lower bounding 

schemes, which are suggested in this paper, can give optimal solution within shorter CPU times than the 

branch and bound algorithms without those. Therefore, we can say that the suggested dominance properties 

and lower bounding schemes are efficient.
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1. Introduction

This scheduling problem can be denoted by 

F2/ri, max-wait/Cmax in the three-field notation 

of Graham et al. [1979], where ri and max-wait 

mean that jobs have cannot be operated on the 

machine 1 earlier than their ready times and 

have to be operated on the machine 2 within a 

certain limited time after those jobs are oper-

ated on the machine 1, respectively, and Cmax is 

the makespan. 

We can found the above scheduling problem 

in a sub workstation of semiconductor fab line. 

At the workstation (process section) consisting 

of continuous clean and diffusion processes in 

semiconductor wafer fabrication line, after a che-

mical treatment process for a wafer lot is com-

pleted on a clean machine, the next process for 

the wafer lot must be started on a diffusion ma-

chine within a pre-determined time period, and if 

the next process for the wafer lots is delayed, 

it must be abandoned or re-processed because 

the chemical treatment is no longer effective 

after the time period [Joo and Kim, 2009]. Such 

a time period between the two processes is 

called the limited waiting time in scheduling re-

search and the lengths of these time periods 

may differ for different wafer lots according to 

their chemical characteristics [Joo and Kim, 2009]. 

In addition, since the above subsystem is not 

the first operation of wafer fabrication in gene-

ral, jobs arrive at this workstation dynamically, 

that is, jobs (processing of wafer lots) may have 

different ready times in the scheduling problem 

for the first machine [Choi et al., 2010]. In this 

study, we develop scheduling algorithms for 

subsystems of a wafer fabrication system, and 

hence we (need to) consider the limited waiting 

time constraint and ready times.

There are many researches for typical flow-

shop scheduling problem [Chen et al., 2000; 

Framinan et al., 2004; Gupta and Stafford, 2006]. 

However, there are few researches for the flow-

shop scheduling problem with limited waiting 

time as follows. Yang and Chern [1995] and 

Bouquard and Lente [2006] suggested branch 

and bound algorithms with upper bounds and 

lower bounds. Also, Joo and Kim [2009] deve-

loped several dominance properties and lower 

bounds for a branch and bound algorithm, and 

Attar et al. [2013] dealt with hybrid flexible flow-

shop scheduling problem with unrelated parallel 

machine and limited waiting times. In addition, 

there are many researches for the flowshop 

scheduling problems with ready times or re-

lease dates of jobs. Specially, Tadei et al. [1998] 

and Potts [1985] suggested branch and bound 

algorithm and investigated the worst-case per-

formance of five approximation algorithms for 

minimizing makespan on the two-machine flow- 

shop with release date, respectively. Also, Hall 

[1994] and Chu [1992] proposed a polynomial 

approximation scheme and a branch and bound 

algorithm for minimizing makespan and total 

tardiness on the two-machine flow-shop with 

release date, respectively. Choi [2014] suggested 

several heuristic algorithms for the two- ma-

chine permutation flowshop scheduling pro-

blem with both of limited waiting time and ready 

times. However, there is no research on branch 

and bound algorithm for the two-machine per-

mutation flowshop scheduling problem with both 
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of limited waiting time and ready times to the 

best of our knowledge. 

This scheduling problem is NP-hard in the 

strong sense, since the two-machine permuta-

tion flowshop scheduling problem with limited 

waiting time is NP-hard in the strong sense [Joo 

and Kim, 2009; Yang and Chern, 1995], which 

is a special case (ready times of jobs are 0) of 

this scheduling problem. To develop an efficient 

branchand bound algorithm, we develop various 

dominance properties and three lower bounding 

schemes, and we use three existing heuristic al-

gorithms [Choi, 2015] to get the initial upper 

bounds of the branch and bound algorithms.

2. Problem Description

In this scheduling problem, n jobs should be 

operated on two-machine flowshop in the order 

of machine 1 and then machine 2, and the fol-

lowing assumptions are made in this study.

1) In the two-machine flowshop scheduling pro-

blem, we have a given set of jobs with dif-

ferent ready times, that is, each job can be 

operated on the machine 1 at its ready time. 

2) The operation times and limited waiting times 

of the jobs are known and different from 

each other.

3) Each job should start its operation on ma-

chine 2 within its corresponding limited wai-

ting time after the job is operated on the 

machine 1.

In this research, only permutation schedules 

are considered, that is, operation order of jobs 

is same on the both machines. Permutation sche-

dules are dominant in the ordinary two-ma-

chine flowshop scheduling problem with the 

objective of minimizing makespan [Baker, 1974; 

Choi and Kim, 2007]. However, in the cases of 

two-machine scheduling problem with the lim-

ited waiting times and ready times of jobs, per-

mutation schedules are not dominant. The fol-

lowing example may be the case that a non- 

permutation schedule is better than the best 

among permutation schedules.

Counter example for the dominance of per-

mutations schedules

We assume that four jobs should be sched-

uled, and their processing times, limited waiting 

times, and ready times are given in <Table 1>. 

As shown in <Figure 1>, the best permutation 

schedule can be obtained by sequence (1, 3, 2, 

4), while there is a better non-permutation 

schedule, in which the sequence on machine 1 

is (1, 3, 2, 4) and the sequence on machine 2 

is (1, 2, 3, 4).

<Table 1> Processing Times, Limited Waiting Times and Ready 

Times for the Example

j = 1 j = 2 j = 3 j = 4

pj1 1 2 3 3

pj2 5 2 1 1

wj 1 0 6 1

rj 0 2 1 6

However, Choi and Kim [2007] described that 

permutation schedules are preferred to non-per-

mutation schedules in most real systems be-

cause of the ease of implementation or material 

flow management, and non-permutation sche-

dules are not feasible in many cases because of 



4 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

(a) Non-permutation schedule (b) Best permutation schedule

<Figure 1> An Example Showing Non-Dominance of Permutation Schedules

technical constraints of material handling sys-

tems. Therefore, in this research, we consider 

only permutation schedules. 

The following symbols are used in this re-

search. 

i, j indices of jobs

k index of machines k = 1, 2

pik operation time of job i on machine k

wi limited waiting time of job i

ri ready time of job i

 partial sequence

 ...m partial schedule obtained with   fol-

lowed by jobs i, j, …, m in this order

U set of unscheduled jobs, that is, those 

are not included in 

c[m]k completion time of the job at the m-th 

position in a (partial) schedule on ma-

chine k

Ck() completion time of the last positioned 

job in a partial schedule   on machine k 

With the above symbols, completion time of 

each job in a given schedule (sequence) can be 

expressed as follows. 

c[1]1 = r[1] + p[1]1 (E.1)

c[1]2 = c[1]1 + p[1]2= r[1] + p[1]1 + p[1]2 (E.2)

c[j]1 = max{max(r[j], c[j-1]1) + p[j]1, c[j-1]2-w[j]} 

for j = 2,…, n (E.3)

c[j]2 = max{c[j]1, c[j-1]2} + p[j]2

for j = 2, …, n (E.4)

3. Dominance Properties

In this section, we develop dominance prop-

erties to reduce the number of sub-problems to 

be considered in the suggested branch and bound 

algorithms, that is, we can eliminate partial sche-

dules that are dominated by others in the branch 

and bound algorithm [Choi and Kim, 2007].

The developed dominance properties are deve-

loped based on the Johnson’s algorithm [Johnson, 

1954] for two-machine permutation flowshop 

scheduling problems (in the Johnson’s algo-

rithm, job i precedes job j in an optimal se-

quence if min{pi1, pj2} min{pi2, pj1}) and proper-

ties suggested by Joo and Kim [2009] and Tadei 

et al. [1998]. Joo and Kim [2009] suggested do-

minance properties for a two-machine flowshop 

with the limited waiting times of jobs and Tadei 

et al. [1998] suggested dominance properties for 

a two-machine flowshop with the ready times 

of jobs.

Proposition 1 : There is a partial schedule σ,  

and if we have two jobs i and j (i∉σ, j∉σ) sa-

tisfying the three conditions such as (C.1) C2(σ) 

≤ ri ≤ rj, (C.2) min{pi1, pj2} ≤ min{pi2, pj1} and  
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(C.3) pi2 ≤ pj1 + wj, there is an optimal solution 

among schedules that start with σij (that is, σij 

dominates σji).

Proof : We can complete this proof by showing 

that Ck(σij) ≤ Ck(σji) for k = 1, 2. The following 

equalities [(A.1)-(A.8)] are the obtained comple-

tion times (of jobs i and j in schedules σij and 

σji) from equalities (E.1)-(E.4) at the end of 

section 2 :

C1(σi) = max{max(ri, C1(σ))+pi1, C2(σ)-wi} (A.1)

C2(σi) = max{C1(σi), C2(σ)}+pi2 (A.2)

C1(σij) = max{max(rj, C1(σi))+pj1, C2(σi)-wj}(A.3)

C2(σij) = max{C1(σij), C2(σi)}+pj2 (A.4)

C1(σj) = max{max(rj, C1(σ))+pj1, C2(σ)-wj} (A.5)

C2(σj) = max{C1(σj), C2(σ)}+pj2 (A.6)

C1(σji) = max{max(ri, C1(σj))+pi1, C2(σj)-wi}(A.7)

C2(σji) = max{C1(σji), C2(σj)}+pi2 (A.8)

In the first phase, we show C1(σij) ≤ C1(σji). 

Since the condition (C.1) C2(σ) ≤ ri ≤ rj of 

this proposition, (A.1), (A.2), (A.5) and (A.6) 

can be reduced to C1(σi) = ri+pi1, C2(σi) = ri+pi1+ 

pi2, C1(σj) = rj+pj1 and C2(σj) = rj+pj1+pj2, respec-

tively.

In addition, from (A.3), we have

C1(σij) = max{max (rj, ri+pi1)+pj1, ri+pi1+pi2-wj}

= max{rj+pj1, ri+pi1+pj1, ri+pi1+pi2-wj}.

Here, from the condition (C.3) pi2 ≤ pj1+wj of 

this proposition, we know ri+pi1+pi2-wj ≤ ri+pi1 

+pj1, and therefore, we have 

     C1(σij) = max{rj+pj1, ri+pi1+pj1} (A.9)

Also, from the reduced (A.5), the reduced 

(A.6) and (A.7), we have

C1(σji) = max{max(ri, C1(σj))+pj1, 

C2(σj)-wi}

       = max{rj+pj1+pi1, rj+pj1+pj2-wi} (A.10)

From (A.9) and (A.10), we have C1(σij) ≤ 

C1(σji).

In the second phase, we show C2(σij) ≤ 

C2(σji).

From the reduced (A.2), (A.4), and (A.9), we 

have

C2(σij) = max{C1(σij), C2(σi)}+pj2 (A.11)

       = max{max{rj+pj1, ri+pi1+pj1},

ri+pi1+pi2}+pj2,

       = max{rj+pj1+pj2, ri+pi1+pj1+pj2, 

ri+pi1+pi2+pj2}

      ≡ max(A1, A2, A3),

where A1 = rj+pj1+pj2, A2 = ri+pi1+pj1+pj2 and 

A3 = ri+pi1+pi2+pj2.

From the reduced (A.6), (A.8), and (A.10), we 

have

C2(σji) = max{C1(σji), C2(σj)}+pi2

       = max{max{rj+pj1+pi1, rj+pj1+pj2- wi}, 

rj+pj1+pj2}+pi2

       = max{rj+pj1+pi1+pi2, rj+pj1+pj2-wi+pi2, 

rj+pj1+pj2+pi2}

      ≡ max{B1, B2, B3}, (A.12)

where B1 = rj+pj1+pi1+pi2, B2 = rj+pj1+pj2-wi+pi2 

and B3 = rj+pj1+pj2+pi2.
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First, we have A1 ≤ B3, easily.

Second, we consider two cases to show max 

(A2, A3) ≤ max{B1, B2, B3}.

Case 1 : If min{pi1, pj2} = pi1, that is, we have 

pi1 ≤ min{ pi2, pj1} from the condition 

(C.2) min{pi1, pj2} ≤ min{pi2, pj1} of 

this proposition, in this case, we have 

A2 ≤ B3 and A3 ≤ B3 since the condi-

tions of pi1 ≤ min{pi2, pj1} and ri ≤ rj.

Case 2 : If min{pi1, pj2} = pj2, that is, we have 

pj2 ≤ min{pi2, pj1} from the condition 

(C.2) min{pi1, pj2} ≤ min{pi2, pj1} of 

this proposition, in this case, we have 

A2 ≤ B1 and A3 ≤ B1 since the con-

ditions of pj2 ≤ min{pi2, pj1} and ri ≤ rj.

In conclusion, by showing Ck(σij) ≤ Ck(σji) 

for k = 1, 2, the proof is completed. ■

Proposition 2 : There is a partial schedule σ,  

and if we have two jobs i and j (i∉σ, j∉σ) satis-

fying the four conditions such as (C.4) ri ≤ C1(σ), 

(C.2) min{pi1, pj2} ≤ min{pi2, pj1}, (C.5) C2(σ)- 

C1(σ) ≤ pi1 and (C.3) pi2 ≤ pj1+wj, there is an 

optimal solution among schedules that start with 

σij (that is, σij dominates σji).

Proof : If we can show that Ck(σij) ≤ Ck(σji) 

for k = 1, 2, this completes the proof. We use 

equalities (A.1)-(A.8) obtained in the proof of 

Proposition 1. 

In the first phase, we show C1(σij) ≤ C1(σji). 

Since the conditions (C.4) ri ≤C1(σ) and (C.5) 

C2(σ)-C1(σ) ≤ pi1 of this proposition, (A.1) and 

(A.2) can be reduced to C1(σi) = C1(σ)+pi1 and 

C2(σi) = C1(σ)+pi1+pi2, respectively.

From the condition (C.3) pi2 ≤ pj1+wj of this 

proposition and (A.3), we have

C1(σij) = max{max(rj, C1(σ)+pi1)+pj1, (A.13)

C1(σ)+pi1+pi2-wj}

       = max{rj+pj1, C1(σ)+pi1+pj1, 

C1(σ)+pi1+pi2-wj} 

       = max{ⓐrj+pj1, ⓑC1(σ)+pi1+pj1}

Also, from the condition (C.4) ri ≤C1(σ) of 

this proposition, (A.5), (A.6) and (A.7), we have

C1(σji) = max{max(ri, C1(σj))+pi1, C2(σj)-wi}

       = max{C1(σj)+pi1, C1(σj)+pj2-wi, 

C2(σ)+pj2-wi}

       = max{ⓒrj+pj1+pi1, ⓓC1(σ)+pj1+pi1, 

C2(σ)-wj+pi1, rj+pj1+pj2-wi, 

C1(σ)+pj1+pj2-wi,

C2(σ)-wj+pj2-wi, 

C2(σ)+pj2-wi} (A.14)

From (A.13) and (A.14), we have C1(σij) ≤ 

C1(σji) since ⓐ rj+pj1 < ⓒ rj+pj1+pi1 and ⓑ C1(σ) 

+pi1+pj1 =ⓓ C1(σ)+pj1+pi1.

In the second phase, we show C2(σij) ≤ C2(σji). 

From the reduced (A.2), (A.4), and (A.14), 

we have 

C2(σij) = max{C1(σij), C2(σi)}+pj2 (A.15)

       = max{rj+pj1, C1(σ)+pi1+pj1, 

C1(σ)+pi1+pi2}+pj2,

       = max{rj+pj1+pj2, C1(σ)+pi1+pj1+pj2,

C1(σ)+pi1+pi2+pj2}

      ≡ max(A1, A2, A3)
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where A1 = rj+pj1+pj2, A2 = C1(σ)+pi1+pj1+pj2 and 

A3 = C1(σ)+pi1+pi2+pj2.

From (A.5), (A.6), (A.8), and (A.14), we have

C2(σj) = max{C1(σj), C2(σ)}+pj2 (A.16)

      = max{max{max(rj, C1(σ))+pj1, 

C2(σ)-wj}, C2(σ)}+pj2 

      = max{rj+pj1+pj2, C1(σ)+pj1+pj2, 

C2(σ)-wj+pj2, C2(σ)+pj2} 

From (A.8), (A.14) and (A.16), we have

C2(σji) = max{C1(σji), C2(σj)}+pi2 (A.17)

       = max{rj+pj1+pi1+pi2, 

C1(σ)+pj1+pi1+pi2, 

C2(σ)-wj+pi1+pi2, rj+pj1+pj2-wi+pi2,

C1(σ)+pj1+pj2-wi+pi2, 

C2(σ)-wj+pj2-wi+pi2,

C2(σ)+pj2-wi+pi2, rj+pj1+pj2+pi2,

C1(σ)+pj1+pj2+pi2,

C2(σ)-wj+pj2+pi2,

C2(σ)+pj2+pi2} 

       ≡ max{B1, B2, B3, B4, B5, B6, B7, B8, 

B9, B10, B11}

       ≡ max{B1, B2, B3, B4, B5, B6, B7, B8, 

B9, B11}

where B2 = C1(σ)+pj1+pi1+pi2, B8 = rj+pj1+pj2+pi2 

and B9 = C1(σ)+pj1+pj2+ pi2. Here, B10 is elimi-

nated since B10 cannot be larger than B11.

First, we have A1 ≤ B8, easily.

Second, we consider two cases to show max 

(A2, A3) ≤ max B2, B9}.

Case 1 : If min{pi1, pj2} = pi1, that is, we have 

pi1 ≤ min{pi2, pj1} from the condition 

(C.2) min{pi1, pj2} ≤ min{pi2, pj1} of 

this proposition, in this case, we have 

A2≤ B9 and A3 ≤ B9.

Case 2 : If min{pi1, pj2} = pj2, that is, we have 

pj2 ≤ min{pi2, pj1} from the condition 

(C.2) min{pi1, pj2} ≤ min{pi2, pj1} of 

this proposition, in this case, we have 

A2 ≤ B2 and A3 ≤ B2.

As a result, we have Ck(σij) ≤ Ck(σji) for k = 

1, 2, and the proof is completed. ■

Proofs for the following propositions 3～5 are 

not shown in this paper, since their proofs are 

similar to those for propositions 1～2.

Proposition 3 : There is a partial schedule σ,  

and if we have two jobs i and j (i∉σ, j∉σ) sa-

tisfying the four conditions such as (C.4) ri ≤ 

C1(σ), (C.2) min{pi1, pj2} ≤ min{pi2, pj1}, (C.6) 

C2(σ)-C1(σ) ≤ pi1+wj and (C.7) C2(σ)+pi2-C1(σ)- 

pi1 ≤ pj1+wj, there is an optimal solution among 

schedules that start with σij (that is, σij domi-

nates σji).

Proposition 4 : There is a partial schedule σ,  

and if we have two jobs i and j (i∉σ, j∉σ) sa-

tisfying the five conditions such as (C.8) C1(σ) 

≤ ri ≤ C2(σ), (C.9) ri ≤ rj, (C.2) min{pi1, pj2} 

≤ min{pi2, pj1}, (C.10) C2(σ) ≤ ri+pi1 and (C.11) 

pi2 ≤ pj1+wj, there is an optimal solution among 

schedules that start with σij (that is, σij domi-

nates σji).
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Proposition 5 : There is a partial schedule σ,  

and if we have two jobs i and j (i∉σ, j∉σ) sa-

tisfying the five conditions such as (C.8) C1(σ) 

≤ ri ≤ C2(σ), (C.9) ri ≤ rj, (C.2) min{pi1, pj2} ≤ 

min{pi2, pj1}, (C.12) C2(σ) ≤ ri+pi1+wj and (C.13) 

C2(σ)+pi2-ri-pi1 ≤ pj1+wj, there is an optimal 

solution among schedules that start with σij 

(that is, σij dominates σji).

Proposition 6 : If pj*1 ≤ pj*2 ≤ mini≠j*{pi1}, 

where j* is the job with the minimum process-

ing time on machine 1 (j* = arg mini{pi1}) and 

the minimum ready time (j* = arg mini{ri}) 

among all jobs, we have an optimal schedule 

with job j* positioned in the first order.

Proof : First, let’s assume that we have an op-

timal schedule without job j* positioned in the 

first order. Then, we can express the optimal 

schedule as σ1 j*σ2, where σ1 and σ2 are partial 

schedules, and σ1 is non-empty partial sequence. 

We can prove this proposition by showing Ck 

(j*σ1σ2) ≤ Ck(σ1 j*σ2) for any arbitrary σ1 and 

σ2 for k = 1, 2. The completion times of job j* 

(the last job) in schedule σ1 j* on machine 1 and 

2 can be expressed as the following equations.

Since rj* ≤ C1(σ1) from the condition of j* = 

arg mini{ri}, 

 C1(σ1 j*) = max{max(rj*, C1(σ1))+pj*1, (A.18)

C2(σ1)-wj*}

          = max{C1(σ1)+pj*1, C2(σ1)-wj*}

   and

 C2(σ1 j*) = max{C1(σ1 j*), C2(σ1)}+pj*2 (A.19)

On the other hand, since the condition of pj*2 

≤ mini≠j*{ pi1}, the second job in j*σ1 (that is, 

first job in σ1 of j*σ1) can be started on machine 

2 instantly after its first operation (on machine 

1) is completed. Therefore, the completion times 

of jobs in σ1 of j*σ1 on each machine can be 

delayed at most to pj*1 than those in σ1 because 

of the condition of j* = arg mini{ri}. That is, we 

have

C1(j*σ1) ≤ pj*1+C1(σ1) (A.20)

and

C2(j*σ1) ≤ C2(σ1)+pj*1 (A.21)

From (A.18) and (A.20), we have 

C1(j*σ1) ≤ C1(σ1 j*) since pj*1+C1(σ1) 

≤ max{ C1(σ1)+pj*1, C2(σ1)-wj*} (A.22)

In addition, From (A.19), (A.21) and the con-

dition of pj*1 ≤ pj*2, we have 

C2(j*σ1) ≤ C2(σ1 j*) since C2(σ1)+pj*1 

  ≤ max{C1(σ1 j*), C2(σ1)}+pj*2 (A.23)

From (A.22) and (A.23), Ck(j*σ1σ2) ≤ Ck(σ1 

j*σ2) for k = 1, 2. This proof is completed. ■

From proposition 6, the following Corollary 

holds : 

Corollary 1 : Given a partial schedule σ, If pj*1 

≤ pj*2 ≤ mini≠j*{pi1}, where j* = arg mini{pi1}, 

j* = arg mini{ri}, i∉σ, j∉σ, then schedules that 

start with σj* dominate the others.
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Proposition 7 : If pj*2 ≤ pj*1 ≤ mini≠j*{pi2}, 

where j* = arg mini{pi2} and j* = arg maxi{ri}, 

we have an optimal schedule with job j* posi-

tioned in the last order.

Proof : First, let’s assume that we have an op-

timal schedule without job j* positioned in the 

last order. Then, we can express the optimal 

schedule as σ1 j*σ2, where σ1 and σ2 are partial 

schedules, and σ1 is non-empty partial sequence. 

We can prove this proposition by showing C2(σ

1σ2  j*) ≤ C2(σ1 j*σ2) for any arbitrary σ1 and σ2.

From C1(σ1) ≤ C1(σ1 j*) and C2(σ1) ≤ C2(σ1 j*), 

we know Ck(σ1σ2) ≤ Ck(σ1 j*σ2) for k = 1, 2.

In addition, the completion times of job j* 

(the last job) in schedule σ1σ2  j* on the machine 

1 and 2 can be expressed as the following 

equations.

C1(σ1σ2 j*) = max{max(rj*, C1(σ1σ2))

+pj*1, C2(σ1σ2)-wj*} (A.24)

and

  C2(σ1σ2 j*) = max{C1(σ1σ2 j*), 

  C2(σ1σ2)}+pj*2 (A.25)

From (A.24) and (A.25), we have

C2(σ1σ2 j*) = max{rj*+pj*1, C1(σ1σ2)+pj*1,  

C2(σ1σ2)-wj*, 

C2(σ1σ2)}+pj*2

          = max{rj*+pj*1, C1(σ1σ2)+pj*1, 

C2(σ1σ2)}+pj*2

Here, from the condition of pj*1 ≤ mini≠j*{ 

pi2}, we have C1(σ1σ2)+pj*1 ≤ C2(σ1σ2).

Therefore, C2(σ1σ2 j*) = max{rj*+pj*1, C2(σ1σ

2)}+pj*2

Case 1 : If rj*+pj*1 ≤ C1(σ1σ2), C2(σ1σ2 j*) = C2(σ

1σ2)+pj*2

Case 2 : Otherwise(C1(σ1σ2) < rj*+pj*1), C2(σ1σ2 

j*) = rj*+pj*1+pj*2

In the case 1, the completion times of jobs in 

σ2 of σ1 j*σ2 on the second machine can be 

delayed at least to pj*2 than those in σ2 of σ1σ2 

j* because of the condition of j* = arg maxi{ri} 

and pj*2 ≤ pj*1. That is, we have

  C2(σ1σ2 j*) = C2(σ1σ2)+pj*2 ≤ 

C2(σ1 j*σ2) (A.26)

On the other hand, in the case 2, the com-

pletion times of jobs in σ2 of σ1 j*σ2  on the first 

machine can be started at the time of rj*+pj*1. 

Therefore, jobs in σ2 of σ1  j*σ2 can be completed 

later than the time of rj*+pj*1+pj*2, obviously. 

That is, we have

C2(σ1σ2 j*) = rj*+pj*1+pj*2 < C2(σ1 j*σ2) (A.27)

From (A.26) and (A.27), we have C2(σ1σ2  j*) 

≤ C2(σ1 j*σ2). This proof is completed. ■

4. Lower Bounds

In this paper, we present several lower boun-

ding schemes on the makespan of a partial sche-

dule to be used in the suggested branch and 

bound algorithms. The following two lower bounds 
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are developed based on a machine-based lower 

bound showed in Baker [1974], and in those, in 

addition, limited waiting time and ready times 

are considered. 

The first is  



∈ 

  
∈
.

The front formula means the minimum time 

when the operations of unscheduled jobs can be 

started on the second machine, and the back 

formula means the total processing times (the 

sum of processing times) of unscheduled jobs 

on the second machine. 

The second is   


 


∈

   
∈
 


∈

The front formula means the minimum time 

when the operations of unscheduled jobs can be 

started on the first machine, and the back for-

mula means the total processing time of un-

scheduled jobs on machine 1. In this paper, we 

describe this lower bound, max(LB1, LB2) as 

LBM.

We use another lower bound based on the 

following proposition 8 suggested by Choi and 

Kim [2007] for the two-machine permutation 

flowshop. In the proposition 8, σπ is (partial) 

schedule obtained with σ followed by partial 

schedule π.

Proposition 8 [Choi and Kim 2007]. Let σ be 

a partial schedule to be placed at the front of 

a complete schedule for the two-machine per-

mutation flowshop scheduling problem with 

the objective of minimizing makespan. Then 

the makespan of any complete schedule star-

ting with σ cannot be less than C2(σπ*), where  

π* is a partial schedule obtained by applying 

the Johnson’s rule (Johnson 1954) to the set 

of jobs that are included in U.

Here, a lower bound can be obtained by using 

the proposition 8 and assuming that there are 

no both limited waiting time constraints and 

ready times of jobs in U, and this lower bound 

is described as LBC&K in this paper.

5. Branch and Bound Algorithm

The main objective of the research is pre-

senting efficient branch and bound algorithms 

for the considered scheduling problem in this 

paper. The architecture of this branch and bound 

algorithm is based on the typical branch and 

bound algorithm of Baker [1974]. That is, in the 

suggested branch and bound algorithms, a branch 

and bound tree is constructed to generate all 

possible schedules (sequences), that is, a node 

in the branch and bound tree means its corres-

ponding partial sequence (schedule), and a node 

at the kth depth in the branch and bound tree 

means its corresponding partial schedule for the 

first-positioned k jobs in a complete schedule 

[Choi and Kim 2007].

In these branch and bound algorithms, for 

calculating initial upper bounds in the branch 

and bound algorithms, we use several existing 

heuristic algorithms, that is, modified Johnson’s 
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algorithm (which is develop algorithm based on 

the Johnson’s algorithm [Johnson, 1954] for twp- 

machine permutation flowshop scheduling pro-

blem with the objective of minimizing make-

span), modified NEH algorithm (which is de-

veloped algorithm based on the algorithm of 

Nawaz, Enscore and Ham [1983] for m-ma-

chine permutation flowshop scheduling problems 

and called as MNEH) and Greed Local Search 

algorithm (which is developed algorithm based 

on an extended neighborhood search algorithm 

of Kim [1993] for m-machine permutation flow-

shop scheduling problem with the objective of 

minimizing mean tardiness and called as GLS) 

suggested by Choi [2015]. Choi [2015] sug-

gested these heuristic algorithm for the two- 

machine permutation flowshop scheduling pro-

blem with limited waiting times and ready times, 

which is same with the scheduling problem of 

this research. We use the best one among solu-

tions of the above heuristic algorithms as the 

initial upper bounds in the branch and bound 

algorithms.

In addition, when we generate some child 

nodes from a selected parent node, based on the 

developed dominance properties in the section 3, 

we prune the child nodes dominated by others. 

Also, for the nodes that are not pruned by the 

dominance properties, we compute the presented 

two bounds (LBM and LBC&K), and we fathom 

the corresponding nodes without lower bounds 

less than the current upper bound. Finally, 

when we construct the branch and bound tree, 

the depth and first rule is adopted, in which we 

select a node with the biggest number of jobs 

among the considered nodes (partial schedules) 

for the next branching.

6. Computational Tests

To evaluate efficiencies of the developed do-

minance properties and lower bounding schemes 

and the suggested branch and bound algori-

thms, we performed the experiments on sets of 

randomly generated test problems. The tests 

were done on a personal computer with the 

CPU of 2.6 GHz clock speed, and the algorithms 

were coded by using C++ programming lan-

guage.

For the computational tests, the processing 

times of jobs were generated from DU(1, 50), 

where DU(a, b) denotes the discrete uniform 

distribution with a range of [a, b], and limited 

waiting times of the jobs were generated from 

DU(1, 100). Also, ready times of the jobs were 

generated from DU(0, LBC&K), in which LBC&K 

is described in the section 4, and here, when 

LBC&K is calculated for generating ready times, 

we assume that σ is empty sequence (σ = ). In 

addition, the utilization of a bottleneck work-

station (process section) is expected to be close 

to 100%, and note that there are always job to 

be processed at the workstation (which is one 

of bottleneck process sections in general) if the 

ready times are generated by the above way. 

Here, note that the ratios of processing times, 

limited waiting times and ready times of jobs 

reflect the real situation at the two-machine 

flowshop consisting of continuous clean and 

diffusion processes in a real fab. Computation 

time required for branch and bound algorithms 

(we tested several versions of the branch and 

bound algorithm) was limited to 3600 seconds 

(1 hour) of CPU time for each test problem to 
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<Table 2> Effectiveness of the Lower Bounds

n

ACPUT
†

ARCPUT*

(MCPUT
‡
)

BB1 BB2 BB3 BB1/BB3 BB2/BB3

10
0.01 

(0.01) 
0.01 

(0.01) 
0.01 

(0.01) 
1.00 1.00 

20
184.45 
(0.07) 

183.80 
(0.05) 

183.80 
(0.05) 

2.05 1.00 

30
1329.44 
(77.86) 

1253.62 
(63.52) 

1158.08 
(49.68) 

3.30 1.48 

40
1694.15 
(474.51) 

1347.74 
(118.50) 

1309.69 
(76.32) 

278.93 1.28 

50
1854.48 

(2072.93) 
(1786.80 
(1621.37) 

1676.55 
(547.87) 

215.26 1.54 

†
average CPU time or lower bound on the average CPU time, which was computed assuming that the CPU time 
for an instance that has not been solved to optimality within 3600 seconds is 3600 seconds [Joo and Kim, 2009].

‡
median CPU time.

*
average ratio of CPU times of a branch and bound algorithm in comparison with those of BB3.

avoid excessive computation times required for 

the tests. Therefore, in some instances, optimal 

solutions could not be found within the CPU 

time limit of 1 hour. 

For evaluations of branch and bound algori-

thms, 100 problems were randomly generated, 

20 problems for each of four levels (10, 20, 30, 

40 and 50) for the number of jobs. In tables 3-6, 

for an instance, the CPU time for a branch and 

bound algorithm means the duration (in se-

conds counter) to find optimal solution, and if 

a branch and bound algorithm cannot find the 

optimal solution within 3,600 seconds, its dura-

tion (CPU time) is 3,600 seconds. For a branch 

and bound algorithm, as ACPUT† and MCPUT‡

are increased, it means that performance of the 

branch and bound algorithm gets worse. In 

addition, for an instance, the ratio of CPU time 

for a branch and bound algorithm means its 

relative ratio of CPU time in comparison with 

that of another B&B algorithm (BB3), and the 

average ratio of CPU time for a branch and 

bound algorithm is mean value of the ratio values 

of CPU times for 20 instances for each of four 

levels (10, 20, 30, 40 and 50)for the number of 

jobs. For example, for an instance, the ratio of 

CPU time of “BB1/BB3” is the relative ratio of 

CPU time of BB1 in comparison with that of 

BB3 (CPU time of BB1/CPU time of BB3). That 

is, as ARCPUT* of “BB1/BB3” is increased, it 

means the performance of BB1 gets worse in 

comparison with BB3.

Firstly, we compared three branch and bound 

algorithms (BB1, BB2 and BB3) with different 

lower bounds. For fathoming the branch and 

bound trees, BB1, BB2 and BB3 use LBM, LBC&K 

and max(LBM, LBC&K) as lower bounding sche-

mes, respectively. In BB1, BB2 and BB3, we use 

all the suggested dominance properties (proposi-

tions 1～7) for reducing the number of generated 

nodes, and we use the best one among solutions 

of the three heuristic algorithms [Choi, 2015] as 

initial upper bounds. As can be seen from Table 

2, BB3 worked better than BB1 and BB2 in terms 
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<Table 3> Effectiveness of the Dominance Properties

n

ACPUT
† 

ARCPUT*

(MCPUT
‡
)

BB3 BB4 BB4/BB3

10
0.01 

0.01 

0.01 

0.01 
1.000

20
183.80 

0.05 

200.53 

0.05 
1.564 

30
1158.08 

49.68 

1289.98 

16.07 
1.402 

40
1309.69 

76.32 

1350.04 

96.60 
1.329 

50
1676.55 

547.87 

1735.26 

1130.00 
1.018 

†
, 

‡
, 

* 
See the footnotes of <Table 4>.

<Table 4> Effectiveness of the initial upper bound

n

ACPUT
† 

ARCPUT*

(MCPUT
‡
)

BB3 BB4 BB5/BB3

10
0.01 

0.01 

0.01 

0.01 
1

20
183.80 

0.05 

374.72 

1.24 
785.1 

30
1158.08 

49.68 

1375.44 

180.94 
674.7 

40
1309.69 

76.32 

2460.27 

3600.01 
6647.4 

50 1676.55 2409.15 5446.6 

†
, 

‡
, 

* 
See the footnotes of <Table 4>.

<Table 5> Summary of the Tests on the Branch and Bound Algorithms

n

ACPUT
†
 

NINS
#

(MCPUT
‡
)

BB1 BB2 BB3 BB4 BB5 BB1 BB2 BB3 BB4 BB5

10
 0.01

†

(0.01)
‡ 

0.01 

(0.01) 

0.01 

(0.01) 

0.01 

(0.01) 

0.01 

(0.01)
0 0 0 0 0

20
184.45 

(0.07) 

183.80 

(0.05) 

183.80 

(0.05) 

200.53 

(0.05) 

374.72 

(1.24) 
1 1 1 1 2

30
1329.4 

(77.8) 

1253.6 

(63.5) 

1158.0 

(49.6) 

1289.9

(16.1) 

1375.4 

(180.9) 
7 6 6 6 7

40
1694.1 

(474.5) 

1347.7 

(118.5)

1309.6 

(76.32) 

1350.0 

(96.60) 

2460.2 

(3600) 
9 7 7 7 13

50
1854.4 

(2072) 

1786.8 

(1621) 

1676.5 

(547.8) 

1735.2 

(1130) 

2409.1 

(3600) 
10 9 9 9 13

†
, 

‡
, 

* 
See the footnotes of <Table 4>.

#
 number of problems among 20 problems that optimal solution cannot be obtained within 3600s.

of both average CPU time and median CPU time. 

In addition, as seen in term of average ratio of 

CPU time, there are less significant differences bet-

ween BB2 and BB3 than those between BB1 and 

BB3, and it means that LBC&K outperforms LBM. 

Next, to show the effectiveness of the domi-

nance properties, we solve the given instances 

with two branch and bound algorithms, BB3 

with all dominance properties and BB4 (BB3- 

DPs), in which none of the dominance proper-

ties is used. The results of the test are given 

in <Table 3>. When the suggested dominance 

properties were not used, CPU time was in-

creased significantly. 

Thirdly, we test the effectiveness of the initial 

upper bound from the heuristic algorithms pro-

posed by Choi [2015]. For this test, we solve the 

given problems with two branch and bound 

algorithms, BB3, in which the heuristic algorithms 

of Choi [2015] are used for initial upper bound 
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<Table 6> Analysis of Variance (for CPU times)

Source of variation
Degrees of

freedom

Sum of

squared error

Mean squared

error
  F**

Algorithm (A) 4 13746175.9 3436544.0  2.6**

Number of jobs (N) 4 287521494.1 71880373.5 55.3**

A×N 16 314726374.2 19670398.4 15.1**

Error 475 617277227.8 1299531.0 

Total 499 1233271272 　 　

**
Different effects with the significance level of 0.05.

as stated above, and BB5 (BB3-initial upper 

bound), in which none of initial upper bounds 

is used, that is, a random solution is generated 

for initial upper bound in each instance. The 

results of the test are given in <Table 4>. When 

the initial upper bound were not used, CPU time 

was increased very much since BB5 cannot give 

optimal solutions in many instances as seen in 

<Table 6>. 

In summary, we shows the performances of 

five branch and bound algorithms (BB1-BB5) in 

<Table 5>. In addition, in the table, we add the 

number of problems among 20 problems that 

optimal solution cannot be obtained within 3600s. 

As you see in <Table 6>, the lower bounding 

schemes, the dominance properties (proposed in 

this research) and initial upper bounds are effec-

tive, and when the branch and bound algorithm 

does not use the dominance properties, lower 

bounding schemes and initial upper bounds, the 

CPU times are increased significantly.

Finally, to see the differences in the perfor-

mance of the algorithms, we performed an ANOVA 

(analysis of variance) for CPU times of five 

branch and bound algorithms (BB1-BB5). Results 

are given in <Table 6>. Note that performances 

of algorithms (BB1-BB5) are statistically diffe-

rent at the significance level of 0.05. In addition, 

CPU times of five branch and bound algorithms 

are affected very much by problem size (num-

ber of jobs), and it is very natural situation since 

the CPU times of algorithms are increased as 

the problem size becomes large.

7. Conclusion

In this research, we suggest branch and bound 

algorithms for a two-machine permutation flow-

shop scheduling problem with the objective of 

minimizing makespan. In this permutation flow-

shop, after each job is operated on the machine 

1 (first machine), the job has to start its second 

operation on machine 2 (second machine) within 

its corresponding limited waiting time. In addi-

tion, each job has its corresponding ready time 

at the machine 1. For this scheduling problem, 

we develop various dominance properties and 

three lower bounding schemes, which are used 

for the suggested branch and bound algorithm. 

In the results of computational tests, we can 

show that the branch and bound algorithm is 

efficient and can give optimal solutions (for 

problem size of 30～50 jobs) in a reasonable 

amount of CPU times.

We can extended this research in several di-

rections. For example, we can modify the sug-
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gested lower bounding schemes and dominance 

properties for the m-machine permutation flow-

shop problem with limited waiting times and 

ready times. In addition, more general cases, 

that is, parallel machines in each stage of m- 

machine flowshop with limited waiting times 

and ready times, can be considered.
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