DOI QR코드

DOI QR Code

Rice Stripe Virus (RSV) Acquisition and Infection Rates According to Wing Form, Sex and Life Stage of Small Brown Planthopper (Laodelphax striatellus)

애멸구의 날개형태, 성별, 그리고 발육단계별 Rice stripe virus (RSV) 보독률과 이병률

  • Yi, Hwi-Jong (Department of Southern Area Crop Science, NICS, RDA) ;
  • Kang, Mi-Hyeong (Crop Foundation Division, NICS, RDA) ;
  • Choi, Man-Young (Technology Transfer Division, NICS, RDA) ;
  • Koo, Hyun-Na (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University) ;
  • Kim, Gil-Hah (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University)
  • 이휘종 (국립식량과학원 남부작물부 논이용작물과) ;
  • 강미형 (국립식량과학원 기초기반과) ;
  • 최만영 (국립식량과학원 기술지원과) ;
  • 구현나 (충북대학교 농업생명환경대학 식물의학과) ;
  • 김길하 (충북대학교 농업생명환경대학 식물의학과)
  • Received : 2015.10.27
  • Accepted : 2015.11.05
  • Published : 2015.12.01

Abstract

Small brown planthopper (SBPH), Laodelphax striatellus, gives a lot of damage to the rice by insect vector of rice stripe virus (RSV). This study compared the RSV acquisition and infection rates according to wing form, sex, and life stage of SBPH. The RSV acquisition rate in macropterous and brachypterous was 60.7% and 63.1%, respectively. The RSV acquisition rate by sex was 61.9% in female and 52.2% in male. However, there was no difference in significance. The RSV acquisition rate of nymphs and adults was 51.2% and 58.7%, respectively. The RSV infection rate by wing form was 53.3.% in macropterous and 48.2% in brachypterous. According to life stage, nymphs was 38.2% and adults was 42.6%. There was no difference in significance. On the other hand, female and male of RSV infection rate was 50.5% and 22.3%, respectively. There was a significant difference. Additionally, developmental periods of SBPH by RSV infection, the longest when inoculated with RSV-infected SBPH in healthy rice, while the shortest when inoculated healthy SBPH in healthy rice.

애멸구(Laodelphax striatellus)는 rice stripe virus (RSV)의 매개충으로 벼에 큰 피해를 주는 해충이다. 본 연구에서는 애멸구의 장 단시형, 암 수, 약 성충에 대한 RSV 보독률과 이병률을 비교하였다. 애멸구의 장 단시형의 RSV 보독률은 각각 60.7%, 63.1%로 크게 차이는 없었다. 암 수에 대한 RSV 보독률은 각각 61.9%, 52.2%로 암컷의 보독률이 더 높았으나 유의성은 없었다. 약 성충의 보독률을 비교한 결과 각각 51.2%, 58.7%로 역시 크게 차이가 나지는 않았다. RSV에 감염된 애멸구에 노출된 건전한 벼의 이병률은 장시형은 53.3%, 단시형은 48.2%를 보였으며, 약 성충의 이병률은 각각 38.2%, 42.6%를 보여 유의성은 없었다. 반면 암컷은 50.5%의 이병률을 보이고 수컷은 22.3%의 이병률을 보여 암컷이 수컷에 비해 22.3% 이병률이 높아 유의성이 있었다. 또한 벼와 애멸구의 RSV 감염여부에 의한 애멸구의 발육기간은 건전한 벼에 RSV 감염 애멸구를 접종 했을 때 가장 긴 것으로 나타났으며, 건전한 벼에 건전한 애멸구를 접종 했을 때 발육기간이 가장 짧은 것으로 나타났다.

Keywords

References

  1. Abe, H., Tomitaka, Y., Shimoda, T., Seo, S., Sakurai, T., Kugimiya, S., Tsuda, S., Kobayashi, M., 2012. Antahonistic plant degense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus. plant Cell Physiol. 53, 204-212. https://doi.org/10.1093/pcp/pcr173
  2. Bae, S.D., Song, Y.H., Park, K.B., 1995. Study on the bionomics of overwintering small brown planthopper, Laodelphax striatellus Fallen, in Milyang. Korean J. Appl. Entomol. 34, 321-327.
  3. Belliure, B., Janssen, A., Maris, P.C., Peters, D., Sabelis, M.W., 2005. Herbivore arthropods benefit from vectoring plant viruses. Ecol. lett. 8, 70-79.
  4. DeAngelis, J.D., Sether, D.M., Rossignol, P.A., 1993. Survival, development, and reproduction in western flower thrips (Thysanoptera: Thripidae) exposed to Impatiens necrotic spot virus. Environ. Entomol. 22, 1308-1312. https://doi.org/10.1093/ee/22.6.1308
  5. Fereres, A., Lister, R.M., Araya, J.E., Foster, J.E., 1989. Development and reproduction of the English grain aphid (Homoptera: Aphididae) on wheat cultivars infected with Barley yellow dwarf virus. Environ. Entomol. 18, 388-393. https://doi.org/10.1093/ee/18.3.388
  6. Fereres, A., Moreno, A., 2009. Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Research. 141, 158-168. https://doi.org/10.1016/j.virusres.2008.10.020
  7. Higashi. C.H.V., Bressan, A., 2013. Influence of a propagative plant virus on the fitness and wing dimorphism of infected and exposed insect vectors. Plant Animal Interactions. 172, 847-856.
  8. Inoue, T., Sakurai, T., 2006. Infection of Tomato spotted wilt virus (TSWV) shortens the life span of thelytokous Thrips tabaci (Thysanoptera: Thripidae). Appl. Entomol Zool. 41, 239-246. https://doi.org/10.1303/aez.2006.239
  9. Jung, T.W., Kim, B.R., Han, G.S., Kang, D.W., Jeong, I.Y., Lim, H.S., Kim, J.S., 2012. Evaluation of pesticide treatment for Control of rice stripe virus after mass migration of small brown planthoppers. Korean J. Res. Plant Dis. 18, 245-249. https://doi.org/10.5423/RPD.2012.18.3.245
  10. Kang, H.J., Ahn, K.S., Han, C.U., Jeong, K.H., Park, S.J., Ji, J.J., Kim, J.S., 2010. Analysis of the factors involved in the occurrence of Rice stripe virus in Chungcheongbukdo in 2008 and 2009. Korean J. Res. Plant Dis. 16, 109-114. https://doi.org/10.5423/RPD.2010.16.2.109
  11. Khan, Z.R., Saxena, R.C., 1985. Behavior and biology of Nephotettix virescens (Homoptera: Cicadellidae) on tungro virus-infected rice plants: epidemiology implications. Environ. Entomol. 14, 297-304. https://doi.org/10.1093/ee/14.3.297
  12. Kwon, Y.H., 2009. Feeding Behavior of Small Brown Planthopper, Laodelphax striatellus Fallen, Using EPG(Electrical Penetration Graph). Masters dissertation. Chunbuk National University, Korea.
  13. Park, C.G., Park, H.H., Kim, G.H., 2011a. Temperature-dependent development mondel and forecasting of adult emergence of overwintered small brown planthopper, Laodelpahax striaellus Fallen, population. Korean J. Appl. Entomol. 50, 343-352. https://doi.org/10.5656/KSAE.2011.10.0.62
  14. Park, J.W., Lee, M.H., Lee, K.W., 2011b. Studies on the some aspect of small brown planthopper transmission of Rice stripe tenuvirus. Korean J. Pesticide Science. 15, 490-494.
  15. Power, A.G., 2000. Insect transmission of plant viruses: a constraint on virus variability. Curr Opin Plant Biol. 3, 336-340. https://doi.org/10.1016/S1369-5266(00)00090-X
  16. Power, A.G., Flecker, A.S., 2003. Virus specificity in disease systems: are species redundant?, in: Kareiva, P., Levis, S.A. (Eds), The importance of species: perspectives on expendability and triage. Princeton University Press, Princeton, pp. 330-346.
  17. SAS Institute. 2008. SAS/STAT user's guide: statistics, version 9.2 Institute, Cary, N.C., U.S.A.
  18. Veronique, B., Maryline, U., Baptiste, M., Emmanuel, J., Stephane, B., 2010. Aphids as transport devices for plant viruses. Comptes Rendus Biologies. 333, 524-538. https://doi.org/10.1016/j.crvi.2010.04.001