DOI QR코드

DOI QR Code

먹이에 따른 파밤나방 발육과 DNA 메틸화 변이

Variation in Development and DNA Methylation of Spodoptera exigua Fed with Different Diets

  • 김태형 (안동대학교 자연과학대학 식물의학과) ;
  • 수닐쿠마르 (안동대학교 생명자원과학과) ;
  • 김용균 (안동대학교 생명자원과학과)
  • Kim, Taehyung (Department of Plant Medicals, College of Natural Sciences, Andong National University) ;
  • Kumar, Sunil (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
  • 투고 : 2015.08.14
  • 심사 : 2015.10.13
  • 발행 : 2015.12.01

초록

곤충 생리현상의 가소성은 후생유전적 변화와 밀접하게 관련을 지을 수 있다. 이 가설을 증명하기 위해 광식성인 파밤나방(Spodoptera exigua)을 대상으로 상이한 먹이 조건에 따라 이 곤충의 발육과 DNA 메틸화에 영향을 주는 지 분석하였다. 동일한 코호트로 부터 얻은 갓 부화한 유충을 최종령에 이르기까지 세 가지 다른 먹이(대파, 배추, 인공사료)로 섭식 처리하였다. 이 결과 상이한 먹이 조건에 따라 유충발육속도, 용화율 및 우화율에서 뚜렷한 차이를 보였다. 인공사료로 사육된 유충이 가장 빠른 유충발육속도와 높은 용화율 및 우화율을 나타냈다. 반면에 두 자연 기주 가운데는 대파가 배추에 비해 파밤나방 발육에 양호하였다. 이러한 먹이에 따른 변이는 혈림프 단백질 및 혈당에서도 차이가 나타났다. 또한 발육과 연계되었을 것으로 추정되는 인슐린유사펩타이드(SeILP1) 유전자의 발현 정도도 먹이조건에 따라 상이했다. 단일항체를 이용하여 파밤나방 게놈 DNA의 시토신 메틸화를 분석한 결과 이 부위에 DNA 메틸화가 검출되었으며, 메틸화 정도는 먹이 조건에 따라 상이했다. 이 결과들은 동일 집단의 파밤나방이 상이한 먹이 조건에 따라 발육차이를 나타내고 또한 시토신 메틸화에 변이를 보여 이 곤충의 생리적 가소성에 후생유전적 인자가 작용하고 있는 것을 제시한다.

Physiological plasticity of insects can be closely related with their epigenetic change. This hypothesis was tested using a polyphagous lepidopteran insect, Spodoptera exigua, by assessing the effects of different diets on development and DNA methylation. Three different diets (Welsh onion (WO), Chinese cabbage (CC), artificial diet (AD)) were assessed by feeding a cohort of larvae from neonate to last instar. There were significant differences in larval developmental rate, pupal weight and adult emergence according to diet treatments. AD-fed larvae exhibited the fastest developmental rate along with the highest pupal weight and adult emergence. Among natural hosts, WO was more favorable for development of S. exigua than CC. Total hemolymph proteins and sugars in the last instar larvae were varied among different diets. Gene expression of an insulin-like peptide (SeILP1) presumably associated with development was also varied among diets. Cytosine methylation of genomic DNA was assessed using a monoclonal antibody. Genomic DNA of S. exigua larvae was methylated. DNA methylation was apparently varied among different diet-fed larvae. The facts that a cohort of S. exigua was differentiated in developmental rate and cytosine methylation by different diets suggest that epigenetic factor(s) may play a crucial role in the physiological plasticity.

키워드

참고문헌

  1. Alborn, H.T., Turlings, T.C.J., Jones, T.H., Stenhagen, G., Loughrin, J.H., Tumlinson, J.H., 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276, 945-949. https://doi.org/10.1126/science.276.5314.945
  2. Awmack, C.S., Leather, S.R., 2002. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817-844. https://doi.org/10.1146/annurev.ento.47.091201.145300
  3. Bird, A., 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6-21. https://doi.org/10.1101/gad.947102
  4. Bones, A.M., Rossiter, J.T., 1996. The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol. Plant. 97, 194-208. https://doi.org/10.1111/j.1399-3054.1996.tb00497.x
  5. Borsatti, F., Mandrioli, M., 2004. The structure of insect DNA methyltransferase 2 (DNMT2) DNA binding domain is responsible for the non-CpG methylation in insect genomes. Caryology 57, 305-311. https://doi.org/10.1080/00087114.2004.10589410
  6. Bradford, M.M., 1972. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye finding. Anal. Biochem. 72, 248-254.
  7. Brewer, M.J., Trumble, J.T., 1991. Inheritance and fitness consequences of resistance to fenvalerate in Spodoptera exigua (Lepidoptera: Noctuidae). J. Econ. Entomol. 84, 1638-1644. https://doi.org/10.1093/jee/84.6.1638
  8. Feng, H.Q., Wu, K.M., Cheng, D.F., Guo, Y.Y., 2003. Radar observation of the autumn migration of the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) and other moths in northern China. Bull. Entomol. Res. 93, 115-124.
  9. Frelichowski, J.E., Jr., Juvik, J.A., 2001. Sesquiterpene carboxylic acids from a wild tomato species affect larval feeding behavior and survival of Helicoverpa zea and Spodoptera exigua (Lepidoptera: Noctuidae). J. Econ. Entomol. 94, 1249-1259. https://doi.org/10.1603/0022-0493-94.5.1249
  10. Glastad, K.M., Hunt, B.G., Yi, S.V., Goodisman, M.A.D., 2011. DNA methylation in insects: on the brink of the epigenomic era. Insect Mol. Biol. 20, 553-565. https://doi.org/10.1111/j.1365-2583.2011.01092.x
  11. Goh, H.G., Choi, J.S., Eom, K.B., Choi, K.M., Kim, J.W., 1993. Seasonal fluctuation of beet armyworm, Spodoptera exigua (Hübner), adult and larva. Kor. J. Appl. Entomol. 32, 389-394.
  12. Goh, H.G., Lee, S.G., Lee, B.P., Choi, K.M., Kim, H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29, 180-183.
  13. Goh, H.G., Park, J.D., Choi, Y.M., Choi, K.M., Park, I.S., 1991. The host plants of beet armyworm, Spodoptera exigua (Hübner), (Lepidoptera: Noctuidae) and its occurrence. Kor. J. Appl. Entomol. 30, 111-116.
  14. Greenberg, S.M., Sappington, T.W., Legaspi, B.C. Jr., Liu, T.X., Setamou, M., 2001. Feeding and life history of Spodoptera exigua (Lepidoptera: Noctuidae) on different host plants. Am. Entomol. Soc. Am. 94, 566-575. https://doi.org/10.1603/0013-8746(2001)094[0566:FALHOS]2.0.CO;2
  15. Greenberg, S.M., Sappington, T.W., Setamou, M., Liu, T.X., 2002. Beet armyworm (Lepidoptera: Noctuidae) host plant preferences for oviposition. Environ. Entomol. 31, 142-148. https://doi.org/10.1603/0046-225X-31.1.142
  16. Han, S., Lee, S., Kim, Y., 1999. Pathogenicity and multiplication of entomopathogenic nematode, Steinernema carpocapsae Weiser, on beet armyworm, Spodoptera exigua (Hübner) and tobacco cutworm, Spodoptera litura (Fabricius). Kor. J. Appl. Entomol. 38, 255-260.
  17. Jiang, X.F., Luo, L.Z., Hu, Y., 1999. Influence of larval diets on development, fecundity and flight capacity of the beet armyworm, Spodoptera exigua. Acta Entomol. Sin. 42, 270-276.
  18. Kim, Y., Hong, Y., 2015. Regulation of hemolymph trehalose level by an insulin-like peptide through diel feeding rhythm of the beet armyworm, Spodoptera exigua. Peptides 68, 91-98. https://doi.org/10.1016/j.peptides.2015.02.003
  19. Kim, Y., Kim, N., 1997. Cold hardiness in Spodoptera exigua (Lepidoptera: Noctuidae). environ. Entomol. 26, 1117-1123. https://doi.org/10.1093/ee/26.5.1117
  20. Kim, Y., Lee, J., Kang, S., Han, S., 1998. Age variation in insecticide susceptibility and biochemical changes of beet armyworm, Spodoptera exigua (Hubner). J. Asia Pac. Entomol. 1, 109-113. https://doi.org/10.1016/S1226-8615(08)60012-6
  21. Kucharski, R., Maleszka, J., Foret, S., Maleszka, R., 2008. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319, 1827-1830. https://doi.org/10.1126/science.1153069
  22. Lu, Z.Q., Xu, Y.H., 1998. The consideration of the incessant outbreak of the cotton bollworm, Helicoverpa armigera. Entomol. Knowl. 35, 132-136.
  23. Mascarenhas, V.J., Graves, J.B., Leonard, B.R., Burris, E., 1998. Susceptibility of field populations of beet armyworm (Lepidoptera: Noctuidae) to commercial and experimental insecticides. J. Econ. Entomol. 91, 827-833. https://doi.org/10.1093/jee/91.4.827
  24. Moar, W.J., Pusztai-Carey, M., Van Faassen, H., Bosch, D., Frutos, R., Rang, C., Luo, K., Adang, M.J., 1995. Development of Bacillus thuringiensis CryIC Resistance by Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Appl. Environ. Microbiol. 61, 2086-2092.
  25. Park, J.D., Goh, H.G., 1995. Control of beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), using synthetic sex pheromone. I. Control by mass trapping in Allium fistulosum field. Kor. J. Appl. Entomol. 34, 45-49.
  26. Painter, R.H., 1951. Insect resistance in crop plants. Macmillan, New York.
  27. Rask, L., Andréasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B., Meijer, J., 2000. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol. Biol. 42, 93-113. https://doi.org/10.1023/A:1006380021658
  28. Ratzka, A., Vogel, H., Kliebenstein, D., Mitchell-Olds, T., Kroymann, J., 2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. USA 99, 11223-11228. https://doi.org/10.1073/pnas.172112899
  29. Saeed, S., Sayyed A.H., Ahmad, I., 2010. Effect of host plants on life-history traits of Spodoptera exigua (Lepidoptera: Noctuidae). J. Pest Sci. 83, 165-172. https://doi.org/10.1007/s10340-009-0283-8
  30. SAS Institute, Inc., 1989. SAS/STAT User's Guide, Release 6.03, Ed. Cary, NC, USA.
  31. Seo, S., Kim, Y., 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Kor. J. Appl. Entomol. 50, 171-178. https://doi.org/10.5656/KSAE.2011.07.0.24
  32. Sequiera, R., Dixon, A.F.G., 1996. Life history responses to host quality changes and competition in the Turkey-oak aphid. Eur. J. Entomol. 93, 53-58.
  33. Singh, O.P., Parihar, S.B.B., 1988. Effect of different hosts on the development of Heliothis armigera (Hubner). Bull. Entomol. Res. 29, 2168-2172.
  34. Thakur, A., Kaur, S., Kaur, A., Singh, V., 2013. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants. Environ. Entomol. 42, 240-246. https://doi.org/10.1603/EN12001
  35. Thompson, S.N., 2003. Trehalose: the insect blood sugar. Adv. Insect Physiol. 31, 205-283. https://doi.org/10.1016/S0065-2806(03)31004-5
  36. Wang, Y., Jorda, M., Jones, P.L., Maleszka, R., Ling, X., Robertson, H.M., Mizzen, C.A., Peinado, M.A., Robinson, G.E., 2006. Functional CpG methylation system in a social insect. Science 314, 645-647. https://doi.org/10.1126/science.1135213
  37. Williams, M.R., 1990. Cotton insect losses 1998. In: Dugger, D., Richter, D. (Eds.), Proceedins, Beltwide Cotton Conference. National Cotton Council. Memphis. TN. pp. 785-806.
  38. Wu, Q., Brown, M.R., 2006. Signaling and function of insulin-like peptides in insects. Annu. Rev. Entomol. 51, 1-24. https://doi.org/10.1146/annurev.ento.51.110104.151011
  39. Xiang, H., Zhu, J., Chen, Q., Dai, F., Li, X., Li, M., Zhang, H., Zhang, G., Li, D., Dong, Y., 2010. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat. Biotechnol. 28, 516-520. https://doi.org/10.1038/nbt.1626
  40. Xiang, H., Li, X. Dai, F. Xu, X. Tan, A. Chen, L. Zhang, G. Ding, Y. Li, Q. Ligan, J. Wailed, A. Guo, Q. XGA, Q. Wang, J. Wang, W. 2013. Comparative methylomics between domesticated and wild silkworms implies possible epigenetic influences on silkworm domestication. BMC Genomics 14, 646. https://doi.org/10.1186/1471-2164-14-646