DOI QR코드

DOI QR Code

A SEMI-LAGRANGIAN METHOD BASED ON WENO INTERPOLATION

  • Yi, Dokkyun (Division of Creative Integrated General Studies Daegu University College) ;
  • Kim, Hyunsook (Division of Mechanical and Automotive Engineering Daegu University College)
  • Received : 2015.09.02
  • Accepted : 2015.10.26
  • Published : 2015.11.15

Abstract

In this paper, a general Weighted Essentially Non-Oscillatory (WENO) interpolation is proposed and applied to a semi-Lagrangian method. The proposed method is based on the conservation law, and characteristic curves are used to complete the semi-Lagrangian method. Therefore, the proposed method satisfies conservation of mass and is free of the CFL condition which is a necessary condition for convergence. Using a several standard examples, the proposed method is compared with the third order Strong Stability Preserving (SSP) Runge-Kutta method to verify the high-order accuracy.

Keywords

References

  1. J. P. Boris and D. L. Book, Flux-corrected transport. I: SHASTA, a fluid transport algorithm that works, Journal of Computational Physics 11 (1973), 38-69. https://doi.org/10.1016/0021-9991(73)90147-2
  2. C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in con-figuration space, Journal of Computational Physics 22 (1976), 330-351. https://doi.org/10.1016/0021-9991(76)90053-X
  3. E. Fijalkow, A numerical solution to the Vlasov equation, Computer Physics Communications 116 (1999), 319-328. https://doi.org/10.1016/S0010-4655(98)00146-5
  4. F. Filbet, E. Sonnendrucker, and P. Bertand, Conservative numerical schemes for the Vlasov equation, Journal of Computational Physics 172 (2001), 166-187. https://doi.org/10.1006/jcph.2001.6818
  5. F. Filbet, E. Sonnendrucker, Comparison of Eulerian Vlasov solvers, Computer Physics Communications 151 (2003), 247-266.
  6. S. Gottlieb, D. I. Ketcheson, and C. -W. Shu, High order strong stability preserving time discretizations, Journal of Scientific Computing 38 (2009), 251-289. https://doi.org/10.1007/s10915-008-9239-z
  7. S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability preserving high order time discretization methods, SIAM Review 43 (2001), 89-112. https://doi.org/10.1137/S003614450036757X
  8. G.-S. Jiang and C.-W. Shu, Ecient implementation of weighted ENO schemes, Journal of Computational Physics 126 (1996), no. 1, 202-228. https://doi.org/10.1006/jcph.1996.0130
  9. X.-D. Liu and S. Osher, Non-oscillatory high order accurate self similar maximum principle satisfying shock capturing schemes, SIAM Journal on Numerical Analysis 33 (1996), 760-779. https://doi.org/10.1137/0733038
  10. X.-D. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, Journal of Computational Physics 115 (1994), 200-212. https://doi.org/10.1006/jcph.1994.1187
  11. C.-W. Shu, Total-variation-diminishing time discretizations, SIAM Journal on Scientific Computing 9 (1988), 1073-1084. https://doi.org/10.1137/0909073
  12. C.-W. Shu and S. Osher, Ecient implementation of essentially non-oscillatory shock capturing schemes, Journal of Computational Physics 77 (1988), no. 2, 439-471. https://doi.org/10.1016/0021-9991(88)90177-5
  13. C.-W. Shu and S. Osher, Ecient implementation of essentially non-oscillatory shock capturing schemes II, Journal of Computational Physics 83 (1989), no. 1, 32-78. https://doi.org/10.1016/0021-9991(89)90222-2
  14. E. Sonnendrucker, J. Roche, P. Bertand, and A. Ghizzo, The semi-Lagrangian method for the numerical resolution of Vlasov equations, Journal of Computational Physics 149 (1998), 201-220.
  15. T. Umeda, A conservative and non-oscillatory scheme for Vlasov code simulations, Earth Planets Space 60 (2008), 773-779. https://doi.org/10.1186/BF03352826