DOI QR코드

DOI QR Code

Control of Phytoplankton Bloom using Apple Snail(Pomacea canaliculata: Ampullariidae)

왕우렁이를 이용한 식물플랑크톤 대발생 제어

  • Received : 2015.02.25
  • Accepted : 2015.03.24
  • Published : 2015.03.31

Abstract

This study is measured the change of chlorophyll-${\alpha}$ concentration and phytoplankton density, the grazing rates (GR) and pseudofaeces production (PFP), by grazing of freshwater apple snail, Pomacea canaliculata, to investigated that the snails are able to control of phytoplankton bloom. The experiments are performed to evaluate the GR and PFP at different conditions such as incubation time (0, 2, 4, 6, 8, 10 and 12 hr), shell height (1.0 to 4.0 cm, n=108), snail density (1, 1.5, 2.5, 3.5 and 5 indiv. $L^{-1}$) and food concentration (200, 400, 600, 800 and $1000{\mu}g$ $L^{-1}$). Regarding feeding time, the highest GR (2.5 L. $gAFDW^{-1}h^{-1}$) and PFP (15.3 mg $AFDW^{-1}$) showed at 4 hr after snail stocking, respectively. The snail, smaller than 1.5 cm in body size, showed the highest of GRs (2.54 L. $gAFDW^{-1}h^{-1}$) for the initial period (2 hr of stocking), compared to those greater than 1.5 cm, which showed a stable FR, higher than 0.099 L. $gAFDW^{-1}h^{-1}$. Upon snail density effect, the density of 5 indiv. $L^{-1}$ induced the most effective inhibition on phytoplankton biomass with the highest PFP. On the food concentration, the highest GR (0.54 L. $gAFDW^{-1}h^{-1}$) and PFP (8.5 mg $gAFDW^{-1}$) were induced at the level of $600{\mu}g$ $L^{-1}$, respectively. We checked that it is possible to control of phytoplankton bloom by the grazing of apple snail as well as Reeve. However, it required a through research for the remove of pseudofaeces and 2nd problem by the decomposition of the organic materals.

본 실험은 왕우렁이를 대상으로 대발생한 식물플랑크톤을 제어할 수 있는 가를 파악하기 위해 섭식율 (grazing rate, GR) 및 유기물 생산 (pseudofaeces production)을 조사하였다. 섭식 효율을 조사하기 위해 시간 (12시간), 개체크기, 개체밀도, 먹이농도 조건 등의 조건을 달리하여 실험하였다. 왕우렁이는 투입 후 2시간 후에 2.5 L. $gAFDW^{-1}h^{-1}$의 최고 GR를 보이다가 12시간까지 일정한 섭식 경향을 나타내었다. 유기물 생산량은 4시간 후에 15.3 mg $AFDW^{-1}$로 가장 많은 양을 나타냈다. 서로 다른 크기조건에서 각고가 1.5 cm 미만의 섭식율 변화가 크고 6시간 후에 비슷하였으며, 중간 크기(2.5 cm)가 3.0 cm 이상인 것보다 섭식율이 높았다. 밀도가 5 indiv. $L^{-1}$ 에서 엽록소 ${\alpha}$ 농도감소율이 가장 높았으며, 그 외의 밀도에서는 비슷한 변화를 나타내었다. 유기물 생산 역시 밀도가 높은 실험군에서 4시간에 최대로 증가하였다. 먹이농도가 $600{\mu}g$ $L^{-1}$일 때 0.54 L. $gAFDW^{-1}h^{-1}$의 가장높은 섭식율과 유기물 생산을 나타내었다. 본 연구에서 왕우렁이뿐만 아니라 논우렁이를 이용하여 식물플랑크톤 대발생을 제어 가능함을 본 연구를 통해 확인하였지만, 이들이 배설한 유기물의 제거 및 배설물의 분해에 다른 2차 문제에 대한 철저한 연구가 필요하다.

Keywords

References

  1. An KG and WM Yang. 2007. Water quality characteristics in Keum river watershed. Korean J. Limnol. 40(1):110-120.
  2. Bontes BM, ML Verschoor, MD Pires, EV Donk and BW Ibelings. 2007. Functional response of Anodonta anatine feeding on a green algae and four strains of cyanobacteria, differing in shape, size and toxicity. Hydrobiologia 584:191-204. https://doi.org/10.1007/s10750-007-0580-2
  3. Carmichael WW. 1899. Toxins of freshwater algae. pp.121-147. In Handbood of Natural Toxins (Tu AT ed.). Marcel Dekker, New York.
  4. Clench WJ and SLH Fuller. 1965. The genus Viviparus (Viviparidae) in North America. Occasional Paper Mollusk. 2:385-412.
  5. Dawen Z, Ping X, Yaqin L, Jun C and Gaodao L. 2007. Bioaccumulation of the hepatotoxic microcystins in various organs of a freshwater snail from a subtropical Chinese lake, Taihu Lake, with dense toxic Microcystis blooms. Environ. Toxicol. Chem. 26:171-176. https://doi.org/10.1897/06-222R.1
  6. Hunt RJ and VF Matveev. 2005. The effects of nutrients and zooplankton community structure on phytoplankton growth in a subtropical Australian reservoir: An enclosure study. Limnologica 35:90-101. https://doi.org/10.1016/j.limno.2005.01.004
  7. Hwang SJ, MJ Jeon, NY Kim and BH Kim. Grazing Rate and Pseudofaeces Production of Native Snail Cipangopaludina chinensis malleata Reeve on Toxic Cyanobacterium Microcystis aeruginosa. Korean J. Limnol. 41:77-85.
  8. Kehde PM and JL Wilhm. 1972. The effects of grazing by snails on community structure of periphyton in laboratory streams. Amer. Midland Nat. 87:2-24.
  9. Kim BH, MS Han, MG Choe, SO Hwang, M Fukushima and N Takamura. 2001. Effects of fish biomanipulation on plankton communities and water quality in a shallow-hypertrophic lake. Published by Institute for Environmental Science. Wonkwang Univ. Korea. EnvSiences. 10:1-7.
  10. Kim HS, JH Park, DS Kong and SJ Hwang. 2004. Water Quality Improvement with the Application of Filter-feeding Bivalve (Corbicula leana Prime) in a Eutrophic Lake. Korean J. Limnol. 37:332-343.
  11. Lee SB, MH Koh, YE Na and JH Kim. 2002. Physiological and Ecological Characteristics of the Apple Snails. Korean J. Environ. Agricult. 21:50-56. https://doi.org/10.5338/KJEA.2002.21.1.050
  12. Lee SJ, JY Lee and KG An. 2007. Top-down Fish Biomanipulation Experiments on Algal Removal Effects. Korean J. Limnol. 40:431-438.
  13. Lee SJ, JY Lee, JH Lee, DY Bae, EH Lee, JH Han, SJ Hwang and KG An. 2008. Removal Effects of Chlorophyll-a and Cyanobacteria Using Laboratory-scale Biomanipulation Tests. Korean J. Limnol. 41:86-92.
  14. Lee YJ, BH Kim, NY Kim, HY Um and SJ Hwang. 2008. Effects of temperature, food concentration, and shell size on filtering rate and pseudofeces production of Unio douglasiae on Microcystis aeruginosa. Korean J. Limnol. 41:61-67.
  15. Ministry of Environment. 1994. Official test methods of water quality. http://webbook.me.go.kr/DLi-File/F001/000/128547.pdf. accessed data:2014.1220
  16. Osenberg CW. 1989. Resource limitation, competition and the influence of life history in a freshwater snail community. Oecologia 79:512-519. https://doi.org/10.1007/BF00378669
  17. Reeders HH and AB Vaate. 1990. Zebra mussel (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia. 200/201:437-450. https://doi.org/10.1007/BF02530361
  18. Reynolds CS. 1984. The ecology of freshwater phytoplankton. Cambridge Univ. Press, London, 384 pp.
  19. Sprung M and U Rose. 1988, Influence of food size and food quality of the feeding of the mussel Dreissena polymorpha. Oecologia 77:526-532. https://doi.org/10.1007/BF00377269
  20. Stoermer EF. 1978. Phytoplankton assemblages as indicators of water quality in the Laubrentian Great Lakes. Trans. Amer. Micros. Soc. 97:2-16. https://doi.org/10.2307/3225680
  21. Weber LM and DM Lodge. 1990. Periphytic food and predatory crayish: relative riles in determining snail distribution. Oecologia 82:33-39. https://doi.org/10.1007/BF00318530