DOI QR코드

DOI QR Code

On the absolute maximum dynamic response of a beam subjected to a moving mass

  • 투고 : 2014.05.13
  • 심사 : 2014.10.29
  • 발행 : 2015.04.10

초록

Taking the mid-span/center-point of the structure as the reference point of capturing the maximum dynamic response is very customary in the available literature of the moving load problems. In this article, the absolute maximum dynamic response of an Euler-Bernoulli beam subjected to a moving mass is widely investigated for various boundary conditions of the base beam. The response of the beam is obtained by utilizing a robust numerical method so-called OPSEM (Orthonormal Polynomial Series Expansion Method). It is underlined that the absolute maximum dynamic response of the beam does not necessarily take place at the mid-span of the beam and thus the conventional analysis needs modifications. Therefore, a comprehensive parametric survey of the base beam absolute maximum dynamic response is represented in which the contribution of the velocity and weight of the moving inertial objects are scrutinized and compared to the conventional version (maximum at mid-span).

키워드

참고문헌

  1. Andersen, L. and Jones, C.J.C. (2006), "Coupled boundary and finite element analysis of vibration from railway tunnels-a comparison of two-and three-dimensional models", J. Sound. Vib., 293(3-5), 611-625. https://doi.org/10.1016/j.jsv.2005.08.044
  2. Cifuentes, A. and Lalapet, S. (1992), "A general method to determine the dynamic response of a plate to a moving mass", Comput. Struct., 42, 31-36. https://doi.org/10.1016/0045-7949(92)90533-6
  3. Ding, H., Chen, L.Q. and Yang, S.P. (2012), "Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load", J. Sound. Vib., 331(10), 2426-2442. https://doi.org/10.1016/j.jsv.2011.12.036
  4. Ebrahimzadeh Hassanabadi, M., Khajeh Ahmad Attari, N., Nikkhoo, A. and Baranadan, M. (2014a), "An optimum modal superposition approach in the computation of moving mass induced vibrations of a distributed parameter system", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, DOI: 10.1177/0954406214542968.
  5. Ebrahimzadeh Hassanabadi, M., Nikkhoo, A., Vaseghi Amiri, J. and Mehri, B. (2013), "A new Orthonormal Polynomial Series Expansion Method invibration analysis of thin beams with non-uniform thickness", Appl. Math. Model., 37(18-19), 8543-8556. https://doi.org/10.1016/j.apm.2013.03.069
  6. Ebrahimzadeh Hassanabadi, M., Vaseghi Amiri, J. and Davodi, MR. (2014b), "On the vibration of a thin rectangular plate carrying a moving oscillator", Scientia Iranica, Tran. A: Civil Eng., 21(2), 284-294.
  7. EftekharAzam, S., Mofid, M. and Afghani Khoraskani, R. (2012), "Dynamic response of Timoshenko beam under moving mass", Scientia Iranica, Tran. A: Civil Eng., 20(1), 50-56.
  8. Esmailzadeh, E. and Ghorashi, M. (1995), "Vibration analysis of beams traversed by uniform partially distributed moving masses", J. Sound. Vib., 184, 9-17. https://doi.org/10.1006/jsvi.1995.0301
  9. Forrest, J.A. and Hunt, H.E.M. (2006), "Ground vibration generated by trains in underground tunnels", J. Sound. Vib., 294(4-5), 706-736. https://doi.org/10.1016/j.jsv.2005.12.031
  10. Fotouhi, R. (2007), "Dynamic analysis of very flexible beams", J. Sound. Vib., 305 (3), 521-533. https://doi.org/10.1016/j.jsv.2007.01.032
  11. Johansson, C., Pacoste, C. and Karoumi, R. (2013), "Closed-form solution for the mode superposition analysis of the vibration in multi-span beam bridges caused by concentrated moving loads", Comput. Struct., 119, 85-94. https://doi.org/10.1016/j.compstruc.2013.01.003
  12. Kiani, K., Nikkhoo, A. and Mehri, B. (2010), "Assessing dynamic response of multi span viscoelastic thin beams under a moving mass via generalized moving least square method", Acta. Mech. Sinica., 26, 721-733. https://doi.org/10.1007/s10409-010-0365-0
  13. Lin, H.P. and Chang, SC. (2005), "Free vibration analysis of multi-span beams with intermediate flexible constraints", J. Sound. Vib., 281(1-2), 155-169. https://doi.org/10.1016/j.jsv.2004.01.010
  14. Mofid, M., Eftekhar Azam, S. and Afghani Khorasghan, R. (2012), "Dynamic control of beams acted by multiple moving masses in resonance state using piezo-ceramic actuators", Proceedings of SPIE - The International Society for Optical Engineering, 8341, art. no. 83412J.
  15. Mofid, M. and Akin, JE. (1996), "Discrete element response of beams with traveling mass", Adv. Eng. Softw., 25, 321-331. https://doi.org/10.1016/0965-9978(95)00099-2
  16. Mofid, M. and Shadnam, M. (2000), "On the response of beams with internal hinges under moving mass", Adv. Eng. Softw., 3, 323-328.
  17. Nikkhoo, A., Ebrahimzadeh Hassanabadi, M., Eftekhar Azam, S. and Vaseghi Amiri J. (2014), "Vibration of a thin rectangular plate subjected to series of moving inertial loads", Mech. Res. Commun., 55, 105-113. https://doi.org/10.1016/j.mechrescom.2013.10.009
  18. Oguamanam, D.C.D., Hansen, J.S. and Heppler, G.R. (2001), "Dynamics of a three-dimensional overhead crane system", J. Sound. Vib., 242(3), 411-426. https://doi.org/10.1006/jsvi.2000.3375
  19. Ouyang, H. (2011), "Moving load dynamic problems: a tutorial (with a brief overview)", Mech. Syst. Signal Pr., 25(6), 2039-2060. https://doi.org/10.1016/j.ymssp.2010.12.010
  20. Siddharthan, R., Zafir, Z. and Norris, G. (1993), "Moving load response of layered soil. I: Formulation", J. Eng. Mech., 119(10), 2052-2071. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:10(2052)
  21. Sofiyev, A.H., Halilov, H.M. and Kuruoglu, N. (2011), "Analytical solution of the dynamic behavior of non-homogenous orthotropic cylindrical shells on elastic foundations under moving loads", J. Eng. Mech., 69(4), 359-371.
  22. Vaseghi Amiri, J., Nikkhoo, A., Davoodi, M.R. and Ebrahimzadeh Hassanabadi, M. (2013), "Vibration analysis of a Mindlin elastic plate under a moving mass excitation by eigenfunction expansion method", Thin Wall. Struct., 62, 53-64. https://doi.org/10.1016/j.tws.2012.07.014
  23. Wang, H.P., Li, J. and Zhang, K. (2007), "Vibration analysis of the maglev guideway with the moving load", J. Sound. Vib., 305(4-5), 621-640. https://doi.org/10.1016/j.jsv.2007.04.030
  24. Xu, B., Lu, J.F. and Wang, J.H. (2008), "Dynamic response of a layered water-saturated half space to a moving load", Comput. Geotech., 35(1), 1-10. https://doi.org/10.1016/j.compgeo.2007.03.005
  25. Yavari, A., Nouri, M. and Mofid, M. (2002), "Discrete element analysis of dynamic response of Timoshenko beams under moving mass", Adv. Eng. Softw., 33, 143-153. https://doi.org/10.1016/S0965-9978(02)00003-0

피인용 문헌

  1. Dynamic behavior of a multispan continuous beam traversed by a moving oscillator vol.226, pp.12, 2015, https://doi.org/10.1007/s00707-015-1474-4
  2. Resonance of a rectangular plate influenced by sequential moving masses vol.5, pp.1, 2016, https://doi.org/10.12989/csm.2016.5.1.087
  3. Assessing Absolute Maximum Vibration Amplitude of a Rectangular Plate Subjected to a Moving Mass vol.41, pp.2, 2017, https://doi.org/10.1007/s40996-017-0055-2
  4. Dynamic response analysis of a thin rectangular plate of varying thickness to a traveling inertial load vol.38, pp.2, 2016, https://doi.org/10.1007/s40430-015-0409-2