References
- Andersen, L. and Jones, C.J.C. (2006), "Coupled boundary and finite element analysis of vibration from railway tunnels-a comparison of two-and three-dimensional models", J. Sound. Vib., 293(3-5), 611-625. https://doi.org/10.1016/j.jsv.2005.08.044
- Cifuentes, A. and Lalapet, S. (1992), "A general method to determine the dynamic response of a plate to a moving mass", Comput. Struct., 42, 31-36. https://doi.org/10.1016/0045-7949(92)90533-6
- Ding, H., Chen, L.Q. and Yang, S.P. (2012), "Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load", J. Sound. Vib., 331(10), 2426-2442. https://doi.org/10.1016/j.jsv.2011.12.036
- Ebrahimzadeh Hassanabadi, M., Khajeh Ahmad Attari, N., Nikkhoo, A. and Baranadan, M. (2014a), "An optimum modal superposition approach in the computation of moving mass induced vibrations of a distributed parameter system", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, DOI: 10.1177/0954406214542968.
- Ebrahimzadeh Hassanabadi, M., Nikkhoo, A., Vaseghi Amiri, J. and Mehri, B. (2013), "A new Orthonormal Polynomial Series Expansion Method invibration analysis of thin beams with non-uniform thickness", Appl. Math. Model., 37(18-19), 8543-8556. https://doi.org/10.1016/j.apm.2013.03.069
- Ebrahimzadeh Hassanabadi, M., Vaseghi Amiri, J. and Davodi, MR. (2014b), "On the vibration of a thin rectangular plate carrying a moving oscillator", Scientia Iranica, Tran. A: Civil Eng., 21(2), 284-294.
- EftekharAzam, S., Mofid, M. and Afghani Khoraskani, R. (2012), "Dynamic response of Timoshenko beam under moving mass", Scientia Iranica, Tran. A: Civil Eng., 20(1), 50-56.
- Esmailzadeh, E. and Ghorashi, M. (1995), "Vibration analysis of beams traversed by uniform partially distributed moving masses", J. Sound. Vib., 184, 9-17. https://doi.org/10.1006/jsvi.1995.0301
- Forrest, J.A. and Hunt, H.E.M. (2006), "Ground vibration generated by trains in underground tunnels", J. Sound. Vib., 294(4-5), 706-736. https://doi.org/10.1016/j.jsv.2005.12.031
- Fotouhi, R. (2007), "Dynamic analysis of very flexible beams", J. Sound. Vib., 305 (3), 521-533. https://doi.org/10.1016/j.jsv.2007.01.032
- Johansson, C., Pacoste, C. and Karoumi, R. (2013), "Closed-form solution for the mode superposition analysis of the vibration in multi-span beam bridges caused by concentrated moving loads", Comput. Struct., 119, 85-94. https://doi.org/10.1016/j.compstruc.2013.01.003
- Kiani, K., Nikkhoo, A. and Mehri, B. (2010), "Assessing dynamic response of multi span viscoelastic thin beams under a moving mass via generalized moving least square method", Acta. Mech. Sinica., 26, 721-733. https://doi.org/10.1007/s10409-010-0365-0
- Lin, H.P. and Chang, SC. (2005), "Free vibration analysis of multi-span beams with intermediate flexible constraints", J. Sound. Vib., 281(1-2), 155-169. https://doi.org/10.1016/j.jsv.2004.01.010
- Mofid, M., Eftekhar Azam, S. and Afghani Khorasghan, R. (2012), "Dynamic control of beams acted by multiple moving masses in resonance state using piezo-ceramic actuators", Proceedings of SPIE - The International Society for Optical Engineering, 8341, art. no. 83412J.
- Mofid, M. and Akin, JE. (1996), "Discrete element response of beams with traveling mass", Adv. Eng. Softw., 25, 321-331. https://doi.org/10.1016/0965-9978(95)00099-2
- Mofid, M. and Shadnam, M. (2000), "On the response of beams with internal hinges under moving mass", Adv. Eng. Softw., 3, 323-328.
- Nikkhoo, A., Ebrahimzadeh Hassanabadi, M., Eftekhar Azam, S. and Vaseghi Amiri J. (2014), "Vibration of a thin rectangular plate subjected to series of moving inertial loads", Mech. Res. Commun., 55, 105-113. https://doi.org/10.1016/j.mechrescom.2013.10.009
- Oguamanam, D.C.D., Hansen, J.S. and Heppler, G.R. (2001), "Dynamics of a three-dimensional overhead crane system", J. Sound. Vib., 242(3), 411-426. https://doi.org/10.1006/jsvi.2000.3375
- Ouyang, H. (2011), "Moving load dynamic problems: a tutorial (with a brief overview)", Mech. Syst. Signal Pr., 25(6), 2039-2060. https://doi.org/10.1016/j.ymssp.2010.12.010
- Siddharthan, R., Zafir, Z. and Norris, G. (1993), "Moving load response of layered soil. I: Formulation", J. Eng. Mech., 119(10), 2052-2071. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:10(2052)
- Sofiyev, A.H., Halilov, H.M. and Kuruoglu, N. (2011), "Analytical solution of the dynamic behavior of non-homogenous orthotropic cylindrical shells on elastic foundations under moving loads", J. Eng. Mech., 69(4), 359-371.
- Vaseghi Amiri, J., Nikkhoo, A., Davoodi, M.R. and Ebrahimzadeh Hassanabadi, M. (2013), "Vibration analysis of a Mindlin elastic plate under a moving mass excitation by eigenfunction expansion method", Thin Wall. Struct., 62, 53-64. https://doi.org/10.1016/j.tws.2012.07.014
- Wang, H.P., Li, J. and Zhang, K. (2007), "Vibration analysis of the maglev guideway with the moving load", J. Sound. Vib., 305(4-5), 621-640. https://doi.org/10.1016/j.jsv.2007.04.030
- Xu, B., Lu, J.F. and Wang, J.H. (2008), "Dynamic response of a layered water-saturated half space to a moving load", Comput. Geotech., 35(1), 1-10. https://doi.org/10.1016/j.compgeo.2007.03.005
- Yavari, A., Nouri, M. and Mofid, M. (2002), "Discrete element analysis of dynamic response of Timoshenko beams under moving mass", Adv. Eng. Softw., 33, 143-153. https://doi.org/10.1016/S0965-9978(02)00003-0
Cited by
- Dynamic behavior of a multispan continuous beam traversed by a moving oscillator vol.226, pp.12, 2015, https://doi.org/10.1007/s00707-015-1474-4
- Resonance of a rectangular plate influenced by sequential moving masses vol.5, pp.1, 2016, https://doi.org/10.12989/csm.2016.5.1.087
- Assessing Absolute Maximum Vibration Amplitude of a Rectangular Plate Subjected to a Moving Mass vol.41, pp.2, 2017, https://doi.org/10.1007/s40996-017-0055-2
- Dynamic response analysis of a thin rectangular plate of varying thickness to a traveling inertial load vol.38, pp.2, 2016, https://doi.org/10.1007/s40430-015-0409-2