DOI QR코드

DOI QR Code

The effect of sweep angle on the limit cycle oscillations of aircraft wings

  • Eken, Seher (Faculty of Aeronautics and Astronautics, Istanbul Technical University) ;
  • Kaya, Metin Orhan (Faculty of Aeronautics and Astronautics, Istanbul Technical University)
  • 투고 : 2014.05.20
  • 심사 : 2014.12.20
  • 발행 : 2015.04.25

초록

This study focuses on the limit cycle oscillations (LCOs) of cantilever swept-back wings containing a cubic nonlinearity in an incompressible flow. The governing aeroelastic equations of two degrees-of-freedom swept wings are derived through applying the strip theory and unsteady aerodynamics. In order to apply strip theory, mode shapes of the cantilever beam are used. The harmonic balance method is used to calculate the frequencies of LCOs. Linear flutter analysis is conducted for several values of sweep angles to obtain the flutter boundaries.

키워드

참고문헌

  1. Barmby, J.C. (1950), "Study of effects of sweep on the flutter of cantilever wings", Eds. Cunningham, H. J. and Garrick, I. E., NACA-Report TN 2121.
  2. Bisplinghoff, R.L. and Ashley, H. (1975), Principles of Aeroelasticity, Dover, New York, NY, USA.
  3. Chen, Y.M. and Liu, J.K. (2008), "Homotopy analysis method for limit cycle flutter of airfoils", Appl. Math. Comput., 203, 854-863. https://doi.org/10.1016/j.amc.2008.05.095
  4. Chen, Y.M., Liu, J.K. and Meng, G. (2012), "Incremental harmonic balance method for nonlinear flutter of an airfoil with uncertain-but-bounded parameters", Appl. Math. Model., 36, 657-667. https://doi.org/10.1016/j.apm.2011.07.016
  5. Dowell, E.H. (2004), A Modern Course in Aeroelasticity, Springer, The Netherlands.
  6. Daochun, L. and Jinwu, X. (2008), "Chaotic motions of an airfoil with cubic nonlinearity in subsonic flow", J. Aircraf., 45(4), 1457-1460. https://doi.org/10.2514/1.32691
  7. Durmaz, S. and Kaya, M.O. (2012), "Limit cycle oscillations of swept-back wings in an incompressible flow", AIAA/53rd Structures, Structural Dynamics, and Materials Conference, Honolulu-Hawaii-USA, April.
  8. Durmaz, S., Kerki, T. and Kaya, M.O. (2011), "Approximate analytical solutions of nonlinear flutter of aircraft wings", IFASD, 15th International Forum on Aeroelasticity and Structural Dynamics, Paris, France, June.
  9. Flax, A.H. (1961), Aeroelasticity and Flutter in High Speed Problems of Aircraft and Experimental Methods Vol. VIII High Speed Aerodynamic and Jet Propulsion, Eds. Donovan, H.F. and Lawrence, H.R., Princeton University Press.
  10. Ghadiri, B. and Razi, M. (2007), "Limit cycle oscillations of rectangular cantilever wings containing cubic nonlinearity in an incompressible flow", J. Fluid. Struct., 23(4), 665-680. https://doi.org/10.1016/j.jfluidstructs.2006.10.010
  11. Gulcat, U. (2010), Fundamentals of Modern Unsteady Aerodynamics, Springer, Berlin, Germany.
  12. Hodges, D.H. and Pierce, G.A. (2011), Introduction to structural dynamics and aeroelasticity, Cambridge aerospace series, Cambridge, United Kingdom.
  13. Jaworski, J.W. and Dowell, E. (2009), "Comparison of theoretical structural models with experiment for a high-aspect-ratio aeroelastic wing", J. Aircraf., 46(2), 708-13. https://doi.org/10.2514/1.39244
  14. Koohi, R., Shahverdi, H. and Haddadpour, H. (2014), "Nonlinear aeroelastic analysis of a composite wing by finite element method", Compos. Struct., 113, 118-126. https://doi.org/10.1016/j.compstruct.2014.03.012
  15. Lee, B.H.K., Gong, L. and Wong, Y.S. (1997), "Analysis and computation of nonlinear dynamic response of a two-degree-of freedom system and its application in aeroelasticity", J. Fluid. Struct., 11(3), 225-246. https://doi.org/10.1006/jfls.1996.0075
  16. Lee, B.H.K., Liu, L. and Chung, K.W. (2005), "Airfoil motion in subsonic flow with strong cubic nonlinear restoring forces", J. Sound. Vib., 281(3), 699-717. https://doi.org/10.1016/j.jsv.2004.01.034
  17. Lee, B.H.K., Price, S.J. and Wong, Y.C. (1999), "Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos", Prog. Aerospace Sci., 35(3), 205-334. https://doi.org/10.1016/S0376-0421(98)00015-3
  18. Liu, L. and Dowell, E.H. (2004), "The secondary bifurcation of an aeroelastic airfoil motion: effect of high harmonics", Nonlin. Dyn., 37, 31-49. https://doi.org/10.1023/B:NODY.0000040033.85421.4d
  19. Liu, L., Dowell, E.H. and Thomas, J.P. (2007), "A high dimensional harmonic balance approach for an aeroelastic airfoil with cubic restoring forces", J. Fluid. Struct., 23(3), 351-363. https://doi.org/10.1016/j.jfluidstructs.2006.09.005
  20. Marzocca, P., Librescu, L. and Silva, W.A. (2002), "Aeroelastic response and flutter of swept aircraft wings", AIAA J., 40(5), 801-812. https://doi.org/10.2514/2.1724
  21. Mickens, R.E. (2010), Truly nonlinear oscillations: harmonic balance, parameter expansions, iteration, and averaging methods, World Scientific Publishing, Danvers, MA, USA.
  22. O'Neil, T. and Strganac, T.W. (1998), "Aeroelastic response of a rigid wing supported by nonlinear springs", J. Aircraf., 35(4), 616-622. https://doi.org/10.2514/2.2345
  23. Peng, C. and Han, J. (2011), "Numerical investigation of the effects of structural geometric and material nonlinearities on limit-cycle oscillation of a cropped delta wing", J. Fluid. Struct., 27(4), 611-622. https://doi.org/10.1016/j.jfluidstructs.2011.03.015
  24. Shams, S., Sadr-Lahidji, M.H. and Haddadpour, H. (2012), "An efficient method for nonlinear aeroelasticy of slender wings", Nonlin. Dyn., 67, 659-81. https://doi.org/10.1007/s11071-011-0018-2
  25. Wright, J.R. and Cooper, J.E. (2007), Introduction to Aircraft Aeroelasticity and Loads, Wiley, England.
  26. Woolsten, D.S., Runyan, H.L. and Andrews, R. (1957), "An investigation of effects of certain types of structural nonlinearities on wing and control surface flutter", J. Aeronaut. Sci., 24(1), 57-63. https://doi.org/10.2514/8.3764
  27. Zhao, L.C. and Yang, Z.C. (1990), "Chaotic motions of an airfoil with nonlinear stiffness in incompressible flow", J. Sound. Vib., 138(2), 245-254. https://doi.org/10.1016/0022-460X(90)90541-7
  28. Zhao, Y., Sun, C., Wang, Z. and Peng, J. (2014), "Nonlinear in-plane free oscillations of suspended cable investigated by homotopy analysis method", Struct. Eng. Mech., 50(4), 487-500. https://doi.org/10.12989/sem.2014.50.4.487

피인용 문헌

  1. Effect of sweep angle on bifurcation analysis of a wing containing cubic nonlinearity vol.3, pp.4, 2016, https://doi.org/10.12989/aas.2016.3.4.447
  2. Design optimization of a fixed wing aircraft vol.4, pp.1, 2017, https://doi.org/10.12989/aas.2017.4.1.065