References
- Attar, P.J., Dowell, E.H. and White, J. (2004), "Modeling the LCO of a delta wing using a high fidelity structural model", 3, 1986-2000.
- Attar, P. and Gordnier, R. (2006), "Aeroelastic prediction of the limit cycle oscillations of a cropped delta wing", J. Fluid. Struct., 22(1), 45-58. https://doi.org/10.1016/j.jfluidstructs.2005.08.010
- Bernardini, G. (1999), "Problematiche aerodinamiche relative alla progettazione di configurazioni innovative", Ph.D. Thesis, Politecnico di Milano.
- Bhasin, S., Chen, P., Wan, Z. and Demasi, L. (2012), "Dynamic nonlinear aeroelastic analysis of the joined wing configuration", Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, April.
- Blair, M., Canfield, R.A. and Roberts Jr., R.W. (2005), "Joined-wing aeroelastic design with geometric nonlinearity", J. Aircraf., 42(4), 832-848. https://doi.org/10.2514/1.2199
- Cavallaro, R., Demasi, L. and Bertuccelli, F. (2013a), "Risks of linear design of joined wings: a nonlinear dynamic perspective in the presence of follower forces", Proceedings of the 54th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference, April.
- Cavallaro, R., Demasi, L., Bertuccelli, F. and Benson, D.J. (2013b), "Risks of linear design of joined wings: a nonlinear dynamic perspective in the presence of follower forces", CEAS Aeronaut. J., 1-20.
- Cavallaro, R., Demasi, L. and Passariello, A. (2012), "Nonlinear analysis of PrandtlPlane joined wings - Part II: effects of anisotropy", Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, April.
- Cavallaro, R., Demasi, L. and Passariello, A. (2014a), "Nonlinear analysis of PrandtlPlane joined wings: effects of anisotropy", AIAA J., 52 (5), 964-980. https://doi.org/10.2514/1.J052242
- Cavallaro R., Iannelli A., Demasi, L. and Razon, A.M. (2014b), "Phenomenology of nonlinear aeroelastic responses of highly deformable joined-winds configurations", ALAA Science and Technology Forum and Exposition: 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, National Harbor, Maryland, January.
- Cebral, J.R. and Lohner, R. (1997), "Conservative load projection and tracking for fluid-structure problems", AIAA J., 35(4), 687-692. https://doi.org/10.2514/2.158
- Celniker, G. and Gossard, D. (1991), "Deformable curve and surface finite-elements for free-form shape design", Comput. Graph., 25(4), 257-266. https://doi.org/10.1145/127719.122746
- Chambers, J.R. (2005), Innovation in Flight: Research of the NASA Langley Research Center on Revolutionary Advanced Concepts for Aeronautics, NASA.
- DalCanto, D., Frediani, A., Ghiringhelli, G.L. and Terraneo, M. (2012), "The lifting system of a PrandtlPlane, Part 1: design and analysis of a light alloy structural solution", Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Springer US, 211-234.
- Demasi, L., Cavallaro, R. and Razon, A. (2013a), "Postcritical analysis of PrandtlPlane joined-wing configurations", AIAA J., 51(1), 161-177. https://doi.org/10.2514/1.J051700
- Demasi, L., Cavallaro, R. and Bertuccelli, F. (2013b), "Post-critical analysis of joined wings: the concept of snap-divergence as a characterization of the instability", 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, Massachusetts, April.
- Demasi, L., Dipace, A., Monegato, G. and Cavallaro, R. (2014), "Invariant formulation for the minimum induced drag conditions of non-planar wing systems", AIAA J., doi: 10.2514/1.J052837.
- Demasi, L. and Livne, E. (2007), "The structural order reduction challenge in the case of geometrically nonlinear joined-wing configurations", Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Honolulu, Hawaii, April.
- Demasi, L. and Livne, E. (2009a), "Contributions to joined-wing aeroelasticity", International Forum on Aeroelasticity and Structural Dynamics Conference, Seattle, Washington, June.
- Demasi, L. and Livne, E. (2009b), "Dynamic aeroelasticity of structurally nonlinear configurations using linear modally reduced aerodynamic generalized forces", AIAA J., 47, 71-90.
- Demasi, L. and Livne, E. (2009c), "Aeroelastic coupling of geometrically nonlinear structures and linear unsteady aerodynamics: Two formulations", J. Fluid. Struct., 25(5), 918 -935. https://doi.org/10.1016/j.jfluidstructs.2009.03.001
- Demasi, L. and Palacios, A. (2010), "A reduced order nonlinear aeroelastic analysis of joined wings based on the proper orthogonal decomposition", Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Orlando, Florida, April.
- Deparis, S., Discacciati, M., Fourestey, G. and Quarteroni, A. (2006), "Fluid-structure algorithms based on Steklov-Poincare operators", Comput. Meth. Appl. Mech. Eng., 195(4143), 5797-5812. https://doi.org/10.1016/j.cma.2005.09.029
- Divoux, N. and Frediani, A. (2012), "The lifting system of a PrandtlPlane, Part 2: preliminary study on flutter characteristics", Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Springer US, 235-267.
- Dowell, E., Edwards, J. and Strganac, T. (2003), "Nonlinear aeroelasticity", J. Aircraf., 40(5), 857-874. https://doi.org/10.2514/2.6876
- Felippa, C. and Geers, T.L. (1988), "Partitioned analysis for coupled mechanical systems", Eng. Comput., 5(2), 123-133. https://doi.org/10.1108/eb023730
- Frediani, A. (1999), "Large Dimension Aircraft", US Patent 5,899,409.
- Frediani, A. (2002), "New Large Aircraft", European Patent EP 0716978B1.
- Frediani, A. (2003), "Velicolo Biplano ad Ali Contrapposte", Italian Patent FI 2003A000043.
- Frediani, A., Cipolla, V. and Rizzo, E. (2012), "The PrandtlPlane configuration: overview on possible applications to civil aviation", Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Springer US, 179-210
- Frediani, A. and Montanari, G. (2009), "Best wing system: an exact solution of the Prandtl's problem", Variational Analysis and Aerospace Engineering, Springer, New York, 183-211.
- Gordnier, R.E. and Melville, R.B. (2001), "Numerical simulation of limit-cycle oscillations of a cropped delta wing using the full navier-stokes equations", Int. J. Comput. Fluid Dyn., 14(3), 211-224. https://doi.org/10.1080/10618560108940725
- Gordnier, R.E. (2003), "Computation of limit-cycle oscillations of a delta wing", J. Aircraf., 40(6), 1206-1208. https://doi.org/10.2514/2.7212
- Harder, R.L. and Desmarais, R.N. (1972), "Interpolation using surface splines", J. Aircraf., 9(2), 189-191. https://doi.org/10.2514/3.44330
- Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37(155), 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
- Lange, R.H., Cahill, J.F., Bradley, E.S., Eudaily, R.R., Jenness, C.M. and Macwilkinson, D.G. (1974), "Feasibility Study of the Transonic Biplane Concept for Transport Aircraft Applications", NASA.
- Liu, G. (2010), Mesh Free Methods: Moving Beyond the Finite Element Method, Taylor & Francis.
- Lucia, D. (2005), "The SensorCraft configurations: a non-linear AeroServoElastic challenge for aviation", Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, American Institute of Aeronautics and Astronautics, Austin, Texas, April.
- Katz, J. and Plotkin, A. (2001), Low-Speed Aerodynamics, Cambridge Aerospace Series, Cambridge University Press.
- Kuhl, D. and Ramm, E. (1999), "Generalized energy momentum method for non-linear adaptive shell dynamics," Comput. Meth. Appl. Mech. Eng., 178(34), 343-366. https://doi.org/10.1016/S0045-7825(99)00024-9
- Kuttler, U. and Wall, W.A. (2008), "Fixed-point fluid/structure interaction solvers with dynamic relaxation", Comput. Mech., 43, 61-72. https://doi.org/10.1007/s00466-008-0255-5
- Miranda, L.R. (1974), "Boxplane Wing and Aircraft", US Patent.
- Murua, J., Palacios, R. and Graham, J.M.R. (2012), "Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics", Prog. Aerosp. Sci., 55(0), 46-72. https://doi.org/10.1016/j.paerosci.2012.06.001
- Nayroles, B., Touzot, G. and Villon, P. (1992), "Generalizing the finite element method: diffuse approximation and diffuse elements", Comput. Mech., 10, 307-318. https://doi.org/10.1007/BF00364252
- Patil, M.J. (2003), "Nonlinear aeroelastic analysis of joined-wing aircraft", Proceedings of the 44th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics & Materials Conference, Norfolk, Virginia, April.
- Prandtl, L. (1924), "Induced Drag of Multiplanes", Technical Report, NACA.
- Phlipot, G., Wang, X., Mignolet, M., Demasi, L., and Cavallaro, R. (2014), "Reduced order modeling for the nonlinear geometric response of some joined wings", Proceedings of the 55th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference, National Harbor, Maryland, January.
- Quaranta, G., Mantegazza, P. and Masarati, P. (2003), "Assessing the local stability of periodic motions for large multibody nonlinear systems using POD", J. Sound Vib., 271, 1015-1038.
- Quaranta, G., Masarati, P. and Mantegazza, P. (2005), "A conservative mesh-free approach for fluid structure problems in coupled problems", Proceedings of the International Conference for Coupled Problems in Science and Engineering, Santorini, Greece, May.
- Rodden, W.P., Taylor, P.F. and McIntosh, S.C. (1998), "Further refinement of the subsonic doublet-lattice method", J. Aircraf., 35(5), 720-727. https://doi.org/10.2514/2.2382
- Seydel, R. (2009), Practical Bifurcation and Stability Analysis, Springer.
- Strogatz, S.H. (1994), Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity), Perseus Books Group.
- Thompson, J. and Stewart, H. (1986), Nonlinear Dynamics and Chaos: Geometrical Methods for Engineers and Scientists, Wiley.
- Tiso, P., Demasi, L., Teunisse, N. and Cavallaro, R. (2014), "A computational method for structurally nonlinear joined wings based on modal derivatives", Proceedings of the 55th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference, National Harbor, Maryland, January.
- Weisshaar, T. and Lee, D.H. (2002), "Aeroelastic tailoring of joined-wing configurations", Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, 22-25 April.
- Wolkovitch, J. (1986), "The joined wing aircraft: an overview", J. Aircraf., 23(3), 161-178. https://doi.org/10.2514/3.45285
Cited by
- Minimum Induced Drag Theorems for Joined Wings, Closed Systems, and Generic Biwings: Theory vol.169, pp.1, 2016, https://doi.org/10.1007/s10957-015-0849-y
- Challenges, Ideas, and Innovations of Joined-Wing Configurations: A Concept from the Past, an Opportunity for the Future vol.87, 2016, https://doi.org/10.1016/j.paerosci.2016.07.002
- Reduced basis methods for structurally nonlinear Joined Wings vol.68, 2017, https://doi.org/10.1016/j.ast.2017.05.041
- Minimum Induced Drag Theorems for Multiwing Systems vol.55, pp.10, 2017, https://doi.org/10.2514/1.J055652
- Nonlinear Structural, Nonlinear Aerodynamic Model for Static Aeroelastic Problems pp.1533-385X, 2019, https://doi.org/10.2514/1.J057309
- PrandtlPlane Joined Wing: Body freedom flutter, limit cycle oscillation and freeplay studies vol.59, pp.None, 2015, https://doi.org/10.1016/j.jfluidstructs.2015.08.016
- Static and dynamic characterization of a flexible scaled joined-wing flight test demonstrator vol.6, pp.2, 2019, https://doi.org/10.12989/aas.2019.6.2.117
- Aerostructural wing shape optimization assisted by algorithmic differentiation vol.64, pp.2, 2015, https://doi.org/10.1007/s00158-021-02884-5
- Aeroelastic Optimization Design of the Global Stiffness for a Joined Wing Aircraft vol.11, pp.24, 2021, https://doi.org/10.3390/app112411800