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SUM AND PRODUCT THEOREMS OF RELATIVE

TYPE AND RELATIVE WEAK TYPE OF ENTIRE

FUNCTIONS

Junesang Choi
∗
, Sanjib Kumar Datta,

Tanmay Biswas and Pulakesh Sen

Abstract. Orders and types of entire functions have been actively
investigated by many authors. In this paper, we aim at investigat-
ing some basic properties in connection with sum and product of
relative type and relative weak type of entire functions.

1. Introduction, Definitions and Notations.

Let f be an entire function defined in the complex plane C. The
function Mf (r) on |z| = r is defined as follows:

Mf (r) := max
|z|=r

|f (z)| ,

which is known as maximum modulus function corresponding to f .
It is noted that, if f is non-constant, then Mf (r) is strictly increasing

and continuous, and its inverse Mf
−1 : (|f (0)| ,∞) → (0,∞) exists and

satisfies lim
s→∞

Mf
−1 (s) = ∞.

On the other hand, the Nevanlinna’s characteristic function of f de-
noted by Tf (r) is defined as

Tf (r) =
1

2π

2π∫

0

log+
∣∣∣f
(
reiθ

)∣∣∣ dθ,

where log+ x = max {log x, 0} for all x > 0.

We begin by recalling the following definitions.
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Definition 1. The order ρf and lower order λf of an entire function

f are defined as

ρf := lim sup
r→∞

log[2]Mf (r)

log r
and λf := lim inf

r→∞

log[2]Mf (r)

log r
.

An entire function whose order and lower order are the same is said to

be of regular growth. Entire functions which are not of regular growth
are said to be of irregular growth.

Definition 2. The type σf and lower type σf of an entire function

f are defined as

σf := lim sup
r→∞

logMf (r)

rρf
and σf := lim inf

r→∞

logMf (r)

rρf
(0 < ρf < ∞).

Datta and Jha [3] introduced to define weak type of an entire function
of finite positive lower order in the following way:

Definition 3. The weak type τf and the growth indicator τ f of an

entire function f of finite positive lower order λf are defined by

τ f := lim sup
r→∞

logMf (r)

rλf
and τf := lim inf

r→∞

logMf (r)

rλf
(0 < λf < ∞) .

For any two given entire functions f and g, the ratio
Mf (r)
Mg(r)

as r → ∞

is called the growth of f with respect to g in terms of their maximum
modulii. From Definition 1, it is seen that the order of an entire function
f which is generally used for computational purpose is defined in terms
of the growth of f with respect to the exponential function as follows:

ρf := lim sup
r→∞

log logMf (r)

log logMexp(z) (r)
= lim sup

r→∞

log logMf (r)

log r
.

Bernal [1, 2] introduced to define relative order of an entire function g
with respect to an entire function f denoted by ρf (g) to avoid comparing
growth with just the exponential function exp(z) as follows:

ρf (g) : = inf {µ > 0 : Mg (r) < Mf (r
µ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1
f Mg (r)

log r
.

It is easy to see that the above definition coincides with the classical
one if f (z) = exp(z) (cf. [16]).
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Similarly one can define the relative lower order of g with respect to
f , denoted by λf (g), as follows:

λf (g) := lim inf
r→∞

logM−1
f Mg (r)

log r
.

An entire function g is said to be of regular relative growth with
respect to f if its relative order with respect to f coincides with its
relative lower order with respect to the same function f .

To compare the relative growth of two entire functions having same
nonzero finite relative order with respect to another entire function, Roy
[15] recently introduced the notion of relative type of two entire functions
in the following manner.

Definition 4. Let f and g be any two entire functions such that
0 < ρg (f) < ∞. Then the relative type σg (f) of f with respect to g is
defined as follows:

σg (f)

:= inf
{
k > 0 : Mf (r) < Mg

(
krρg(f)

)
for all sufficiently large values of r

}

= lim sup
r→∞

M−1

g Mf (r)

rρg(f)
.

Likewise one can define the relative lower type of an entire function f
with respect to an entire function g denoted by σg (f) as follows:

σg (f) := lim inf
r→∞

M−1
g Mf (r)

rρg(f)
(0 < ρg (f) < ∞) .

Analogously to determine the relative growth of two entire functions
having same nonzero finite relative lower order with respect to another
entire function, Datta and Biswas [5] introduced to define relative weak

type of an entire function f with respect to another entire function g of
finite positive relative lower order λg (f) in the following way.

Definition 5. The relative weak type τg (f) of an entire function f
with respect to another entire function g having finite positive relative
lower order λg (f) is defined as follows:

τg (f) := lim inf
r→∞

M−1
g Mf (r)

rλg(f)
.

Also one may define the growth indicator τ g (f) of an entire function f
with respect to an entire function g in the following way:

τ g (f) := lim sup
r→∞

M−1
g Mf (r)

rλg(f)
(0 < λg (f) < ∞) .
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Choosing g(z) = exp(z), one may easily verify that Definition 4 and
Definition 5 coincide with the classical definitions of type (lower type)
and weak type, respectively.

In this connection, the following definition is introduced (see [2]).

Definition 6. A non-constant entire function f is said to have Prop-
erty (A)

if for any σ > 1 and for all large r, [Mf (r)]
2 ≤ Mf (r

σ) holds.

For examples of functions with or without the Property (A), one may
refer to [2].

Here, in this paper, we aim at investigating some basic properties of
relative type and relative weak type of entire functions under somewhat
different conditions. Throughout this paper, for entire functions fi and
gk (i, k = 1, 2), we assume that σfi (gk), σfi (gk), τfi (gk) and τ fi (gk)
are all nonzero finite.

It is also remarked in passing that the standard definitions and nota-
tions in the theory of entire functions, for which one may refer to [17],
are not given here.

2. Some Known and New Results

Determination of the order and type of entire functions are very im-
portant to study the basic growth properties in the value distribution
theory. In this regard, during the past decades, many researchers have
made close investigations on this research subject to yield many results,
for example, some of which are recalled here.

Theorem A ([9]). Let f and g be any two entire functions of order

ρf and ρg respectively. Then

ρf+g = ρg when ρf < ρg and ρf ·g ≤ ρg when ρf ≤ ρg .

Theorem B ([12]). Let f and g be any two entire functions with

order ρf , ρg, and type σf , σg, respectively. Then

ρf+g ≤ max {ρf , ρg} , ρf ·g ≤ max {ρf , ρg}

and

σf+g ≤ max {σf , σg} , σf ·g ≤ σf + σg .
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Detailed investigations on the properties of relative order of entire
functions have been made in [2], [8], [10] and [11]. In this connection we
state the following two theorems.

Theorem C ([2]). Let f1, g1 and g2 be any three entire functions. If
ρf1 (gi) = max {ρf1 (gk) | k, i = 1, 2}, then

ρf1 (g1 ± g2) ≤ ρf1 (gi) (i = 1, 2),

whose equality holds when ρf1 (g1) 6= ρf1 (g2).

Theorem D ([2, 14]). Let f1, g1 and g2 be any three entire functions.
If ρf1 (gi) = max {ρf1 (gk) | k, i = 1, 2}, then

ρf1 (g1 · g2) ≤ ρf1 (gi) (i = 1, 2),

whose equality holds when ρf1 (g1) 6= ρf1 (g2) .
Similar results hold for the quotient g1

g2
provided g1

g2
is entire.

Datta et al. [4] proved the following two theorems for relative lower

order.

Theorem E ([4]). Let f1, f2 and g1 be any three entire functions. If
λfi (g1) = min {λfk (g1) | k, i = 1, 2}, then

λf1±f2 (g1) ≥ λfi (g1) (i = 1, 2),

whose equality holds when λf1 (g1) 6= λf2 (g1).

Theorem F ([4]). Let f1, f2 and g1 be any three entire functions. If
λfi (g1) = min {λfk (g1) | k, i = 1, 2} and g1 has the Property (A), then

λf1·f2 (g1) ≥ λfi (g1) (i = 1, 2),

whose equality holds when λf1 (g1) 6= λf2 (g1).

Similar results hold for the quotient f1
f2

provided f1
f2

is entire.

Extending the results, Datta et al. [6] established the following the-
orems under somewhat different conditions.

Theorem G ([6]). Let f1, f2, g1 and g2 be any four entire functions.

(i) If ρfi (g1) = min {ρfk (g1) | k, i = 1, 2} and g1 is of regular relative
growth with respect to at least any one of f1 or f2, then

ρf1±f2 (g1) ≥ ρfi (g1) (i = 1, 2),

whose equality holds when ρf1 (g1) 6= ρf2 (g1).
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(ii) If λf1 (gi) = max {λf1 (gk) | k, i = 1, 2} and at least g1 or g2 is of

regular relative growth with respect to f1, then

λf1 (g1 ± g2) ≤ λf1 (gi) (i = 1, 2),

whose equality holds when λf1 (g1) 6= λf1 (g2).

Theorem H ([6]). Let f1, f2, g1 and g2 be any four entire functions.

(i) If ρfi (g1) = min {ρfk (g1) | k, i = 1, 2}, g1 has the Property (A)
and is of regular relative growth with respect to at least any one of

f1 or f2, then

ρf1·f2 (g1) ≥ ρfi (g1) (i = 1, 2),

whose equality holds when ρf1 (g1) 6= ρf2 (g1).

Similar results hold for the quotient
f1
f2

provided
f1
f2

is entire.

(ii) If λf1 (gi) = max {λf1 (gk) | k, i = 1, 2}, f1 has the Property (A)
and at least g1 or g2 is of regular relative growth with respect to

f1, then
λf1 (g1 · g2) ≤ λf1 (gi) (i = 1, 2),

whose equality holds when λf1 (g1) 6= λf1 (g2).
Similar results hold for the quotient g1

g2
provided g1

g2
is entire.

Theorem I ([6]). Let f1, f2, g1 and g2 be any four entire functions.

(i) If (g1) 6= ρf2 (g1), ρf1 (g2) 6= ρf2 (g2) and g1 and g1 are both of

regular relative growth with respect to at least any one of f1 or f2,
then

ρf1±f2 (g1 ± g2)

≤ max [min {ρf1 (g1) , ρf2 (g1)} ,min {ρf1 (g2) , ρf2 (g2)}] ,

whose equality holds when

min {ρf1 (g1) , ρf2 (g1)} 6= min {ρf1 (g2) , ρf2 (g2)} .

(ii) If λf1 (g1) 6= λf2 (g1) , λf1 (g2) 6= λf2 (g2) and at least g1 or g2 is of

regular relative growth with respect to f1 and f2, respectively, then

λf1±f2 (g1 ± g2)

≥ min [max {λf1 (g1) , λf2 (g1)} ,max {λf1 (g2) , λf2 (g2)}] ,

whose equality holds when

max {λf1 (g1) , λf2 (g1)} 6= max {λf1 (g2) , λf2 (g2)} .

Theorem J ([6]). Let f1, f2, g1 and g2 be any four entire functions.
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(i) If (a) ρf1 (g1) 6= ρf2 (g1), (b) ρf1 (g2) 6= ρf2 (g2) (c) f1 · f2, g1 and

g2 have the Property (A) and (d) g1 and g1 are both of regular

relative growth with respect to at least any one of f1 or f2, then

ρf1·f2 (g1 · g2)

≤ max [min {ρf1 (g1) , ρf2 (g1)} ,min {ρf1 (g2) , ρf2 (g2)}]

and

ρf1/f2 (g1/g2)

≤ max [min {ρf1 (g1) , ρf2 (g1)} ,min {ρf1 (g2) , ρf2 (g2)}] ,

whose equality holds when

min {ρf1 (g1) , ρf2 (g1)} 6= min {ρf1 (g2) , ρf2 (g2)} .

(ii) If (a) λf1 (g1) 6= λf2 (g1), (b) λf1 (g2) 6= λf2 (g2), (c) g1 · g2, f1 and

f2 have the Property (A) and (d) at least g1 or g2 is of regular

relative growth with respect to f1 and f2, respectively, then

λf1·f2 (g1 · g2)

≥ min [max {λf1 (g1) , λf2 (g1)} ,max {λf1 (g2) , λf2 (g2)}]

and

λf1/f2 (g1/g2)

≥ min [max {λf1 (g1) , λf2 (g1)} ,max {λf1 (g2) , λf2 (g2)}] ,

whose equality holds when

max {λf1 (g1) , λf2 (g1)} 6= max {λf1 (g2) , λf2 (g2)} .

In the cases of relative type and relative weak type, it therefore seems
natural to make parallel investigations of their basic properties. In this
connection, Roy [15] proved only the following theorem.

Theorem K ([15]). Let f1, g1 and g2 be any three entire functions.
If (i) ρf1 (gi) = max {ρf1 (gk) | k, i = 1, 2} and (ii) ρf1 (g1) 6= ρf1 (g2),
then

σf1 (g1 ± g2) = σf1 (gi) .

Here, under somewhat different conditions, we present the following
theorems related to relative type (relative lower type ) and relative weak

type that extend the previous results in some sense.

Theorem 1. Let f1, f2, g1 and g2 be any four entire functions such

that ρfk (gk) (k = 1, 2) are non-zero finite.
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(I) If (A) ρf1 (gi) = max {ρf1 (gk) | k, i = 1, 2} and (B) ρf1 (g1) 6=
ρf1 (g2), then

σf1 (g1 ± g2) = σf1 (gi) (i = 1, 2).

(II) If (A) ρfi (g1) = min {ρfk (g1) | k = 1, 2} , (B) ρf1 (g1) 6= ρf2 (g1)
and (C) g1 is of regular relative growth with respect to at least

any one of f1 or f2, then
(i) σf1±f2 (g1) = σfi (g1) (i = 1, 2)
and

(ii) σf1±f2 (g1) = σfi (g1) (i = 1, 2).
(III) Assume the functions f1, f2, g1 and g2 satisfy the following condi-

tions:

(A) ρfi (gk) = max
{
min{ρf1 (g1) , ρf2 (g1)}, min{ρf1 (g2) , ρf2 (g2)}

}
;

(B) ρf1 (g1) 6= ρf2 (g1);
(C) ρf1 (g2) 6= ρf2 (g2);
(D) min{ρf1 (g1) , ρf2 (g1)} 6= min{ρf1 (g2) , ρf2 (g2)};
(E) g1 and g2 are both of regular relative growth with respect to

at least any one of f1 or f2.
Then we have

(i) (i) σf1±f2 (g1 ± g2) = σfi (gk) (i, k = 1, 2)
and

(ii) σf1±f2 (g1 ± g2) = σfi (gk) (i, k = 1, 2).

Theorem 2. Let f1, f2, g1 and g2 be any four entire functions such

that λfk (gk) (k = 1, 2) are non-zero finite.

(I) The following conditions are assumed to be satisfied:

(A) (A) λf1 (gi) = max {λf1 (gk) | k = 1, 2};
(B) λf1 (g1) 6= λf1 (g2);
(C) At least g1 or g2 is of regular relative growth with respect to

f1.
Then we have

(i) τf1 (g1 ± g2) = τf1 (gi) (i = 1, 2).
and

(ii) τ f1 (g1 ± g2) = τ f1 (gi) (i = 1, 2).
(II) The following two conditions are assumed to be satisfied:

(A) λfi (g1) = min {λfk (g1) | k = 1, 2}
and

(B) λf1 (g1) 6= λf2 (g1).
Then we have

(i) τf1±f2 (g1) = τfi (g1) (i = 1, 2)
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and

(ii) τ f1±f2 (g1) = τ fi (g1) (i = 1, 2).
(III) The following conditions are assumed to be satisfied:

(A) λfi(gk) = min
{
max{λf1(g1), λf2(g1)},max{λf1(g2), λf2(g2)}

}
;

(B) λf1 (g1) 6= λf2 (g1);
(C) λf1 (g2) 6= λf2 (g2);
(D) max{λf1 (g1) , λf2 (g1)} 6= max{λf1 (g2) , λf2 (g2)};
(E) At least g1 or g2 is of regular relative growth with respect to

f1 and f2, respectively.
Then we have

(i) τf1±f2 (g1 ± g2) = τfi (gk) (i, k = 1, 2)
and

(ii) τ f1±f2 (g1 ± g2) = τ fi (gk) (i, k = 1, 2).

Theorem 3. Let f1, f2, g1 and g2 be any four entire functions such

that ρfk (gk) (k = 1, 2) are non-zero finite.

(I) The following conditions are assumed to be satisfied:

(A) ρf1 (gi) = max {ρf1 (gk) | k, i = 1, 2};
(B) ρf1 (g1) 6= ρf1 (g2);
(C) f1 has the Property (A).
Then we have

(i) σf1 (g1 · g2) ≤ σf1 (gi) (i = 1, 2), whose equality holds only

when 2ρf1 (gi) ≤ 1.
(ii) σf1 (g1 · g2) ≤ σf1 (gi) (i = 1, 2), whose equality holds only

when 2ρf1 (gi) ≤ 1.

(II) The following conditions are assumed to be satisfied:

(A) ρfi (g1) = min {ρfk (g1) | k = 1, 2};
(B) ρf1 (g1) 6= ρf2 (g1);
(C) g1 has the Property (A) and also g1 is of regular relative growth

with respect to at least any one of f1 or f2.
Then we have

(i) σf1·f2 (g1) ≥ σfi (g1) (i = 1, 2), whose equality holds only when

2ρfi (g1) ≥ 1.
and

(ii) σf1·f2 (g1) ≥ σfi (g1) (i = 1, 2), whose equality holds only

when 2ρfi (g1) ≥ 1.

(III) The following conditions are assumed to be satisfied:

(A) ρfi(gk) = max
{
min{ρf1(g1), ρf2(g1)},min{ρf1(g2), ρf2(g2)}

}
;

(B) ρf1 (g1) 6= ρf2 (g1);
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(C) ρf1 (g2) 6= ρf2 (g2);
(D) min {ρf1 (g1) , ρf2 (g1)} 6= min{ρf1 (g2) , ρf2 (g2)};
(E) f1 · f2, g1 and g2 have the Property (A);
(F) g1 and g2 are both of regular relative growth with respect to

at least any one of f1 or f2;

(G) 2ρf1·f2(gk) ≤ 1 and 2ρfk (gk) ≥ 1.
Then we have

(i) σf1·f2 (g1 · g2) = σfi (gk) (i, k = 1, 2)
and

(ii) σf1·f2 (g1 · g2) = σfi (gk) (i, k = 1, 2).

Similar results for the above three cases hold for the quotient
f1
f2

provided f1
f2

is entire.

Theorem 4. Let f1, f2, g1 and g2 be any four entire functions such

that ρfk (gk) (k = 1, 2) are non-zero finite.

(I) The following conditions are assumed to be satisfied:

(A) λf1 (gi) = max {λf1 (gk) | k, i = 1, 2};
(B) λf1 (g1) 6= λf1 (g2);
(C) f1 has the Property (A) and at least g1 or g2 is of regular

relative growth with respect to f1.
Then we have

(i) τf1 (g1 · g2) ≤ τf1 (gi) (i = 1, 2), whose equality holds only

when 2λf1
(gi) ≤ 1.

and

(ii) τ f1 (g1 · g2) ≤ τ f1 (gi) (i = 1, 2), whose equality holds only

when 2λf1
(gi) ≤ 1.

(II) The following conditions are assumed to be satisfied:

(A) λfi (g1) = min {λfk (g1) | k = 1, 2};
(B) λf1 (g1) 6= λf2 (g1);
(C) g1 has the Property (A).

Then we have

(i) τf1·f2 (g1) ≥ τfi (g1) (i = 1, 2), whose equality holds only when

2λfi
(g1) ≥ 1.

(ii) τ f1·f2 (g1) ≥ τ fi (g1) (i = 1, 2), whose equality holds only when

2λfi
(g1) ≥ 1.

(III) The following conditions are assumed to be satisfied:

(A) λfi(gk) = min
{
max{λf1(g1), λf2(g1)},max{λf1(g2), λf2(g2)}

}
;

(B) λf1 (g1) 6= λf2 (g1);
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(C) λf1 (g2) 6= λf2 (g2);
(D) max{λf1 (g1) , λf2 (g1)} 6= max{λf1 (g2) , λf2 (g2)};
(E) g1 · g2, f1 and f2 have the Property (A);
(F) At least g1 or g2 is of regular relative growth with respect to

f1 and f2, respectively;

(G) 2λf1·f2
(gk) ≤ 1 and 2λfk

(gk) ≥ 1.
Then we have

(i) τf1·f2 (g1 · g2) = τfi (gk) (i, k = 1, 2)
and

(ii) τ f1·f2 (g1 · g2) = τ fi (gk) (i, k = 1, 2).

Similar results for the above three cases hold for the quotient
f1
f2

provided f1
f2

is entire.

Here we reconsider the equalities in Theorem C to Theorem H under
somewhat different conditions and give our assertions as in following
four theorems.

Theorem 5. Let f1, f2, g1 and g2 be any four entire functions.

(I) If either σf1 (g1) 6= σf1 (g2) or σf1 (g1) 6= σf1 (g2) holds, then

ρf1 (g1 ± g2) = ρf1 (g1) = ρf1 (g2) .

(II) The following two conditions are assumed to be satisfied:

(A) Either σf1 (g1) 6= σf2 (g1) or σf1 (g1) 6= σf2 (g1) holds;
(B) g1 is of regular relative growth with respect to at least any one

of f1 or f2.
Then we have

ρf1±f2 (g1) = ρf1 (g1) = ρf2 (g1) .

Theorem 6. Let f1, f2, g1 and g2 be any four entire functions.

(I) The following conditions are assumed to be satisfied:

(A) Either τf1 (g1) 6= τf1 (g2) or τ f1 (g1) 6= τ f1 (g2) holds;
(B) At least g1 or g2 is of regular relative growth with respect to

f1.
Then we have

λf1 (g1 ± g2) = λf1 (g1) = λf1 (g2) .

(II) If either τf1 (g1) 6= τf2 (g1) or τ f1 (g1) 6= τ f2 (g1) holds, then

λf1±f2 (g1) = λf1 (g1) = λf2 (g1) .
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Theorem 7. Let f1, f2, g1 and g2 be any four entire functions.

(I) The following conditions are assumed to be satisfied:

(A) Either σf1 (g1) 6= σf1 (g2) or σf1 (g1) 6= σf1 (g2) holds;
(B) f1 has the Property (A);

(C) 2ρf1 (g1) ≥ 1.
Then we have

ρf1 (g1 · g2) = ρf1 (g1) = ρf1 (g2) .

(II) The following conditions are assumed to be satisfied:

(A) Either σf1 (g1) 6= σf2 (g1) or σf1 (g1) 6= σf2 (g1) holds;
(B) g1 has the Property (A) and is of regular relative growth with

respect to at least any one of f1 or f2;
(C) 2ρfi (g1) ≥ 1.
Then we have

ρf1·f2 (g1) = ρf1 (g1) = ρf2 (g1) .

Similar results for the above two cases hold for the quotient
f1
f2

provided f1
f2

is entire.

Theorem 8. Let f1, f2, g1 and g2 be any four entire functions.

(I) The following conditions are assumed to be satisfied:

(A) Either τf1 (g1) 6= τf1 (g2) or τ f1 (g1) 6= τ f1 (g2) holds;
(B) f1 has the Property (A) and at least g1 or g2 is of regular

relative growth with respect to f1;
(C) 2λf1

(gi) ≤ 1.
Then we have

λf1 (g1 · g2) = λf1 (g1) = λf1 (g2) .

(II) The following conditions are assumed to be satisfied:

(A) Either τf1 (g1) 6= τf1 (g2) or τ f1 (g1) 6= τ f1 (g2) holds;
(B) g1 has the Property (A);

(C) 2λfi
(g1) ≥ 1.

Then we have

λf1·f2 (g1) = λf1 (g1) = λf2 (g1) .

Similar results for the above three cases hold for the quotient
f1
f2

provided
f1
f2

is entire.
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3. Required Known Properties

Here we recall some known properties, which will be required in the
next section, as in the following lemmas. For Lemmas 1 and 2, see
[2]. For Lemma 3 and Lemma 4 , one may refer to [12] and [7, p.18],
respectively.

Lemma 1. Suppose f be an entire function and α, β be such that

α > 1 and 0 < β < α. Then

Mf (αr) > βMf (r) .

Lemma 2. Let f be an entire function satisfying the Property (A).
Then for any positive integer n and for all sufficiently large r,

[Mf (r)]
n ≤ Mf

(
rδ
)

holds for δ > 1.

Lemma 3. Every entire function f satisfying the Property (A) is

transcendental.

Lemma 4. Let f be an entire function. Then, for all sufficiently

large values of r, we have

Tf (r) ≤ logMf (r) ≤ 3Tf (2r) .

4. Proofs

Here we prove our main results.

Proof of Theorem 1. From the definition of relative type and
relative lower type of entire function, we have for all sufficiently large
values of r that

(1) Mgk (r) ≤ Mfk

[
(σfk (gk) + ε) rρfk(gk)

]
,

Mgk (r) ≥ Mfk

[
(σfk (gk)− ε) rρfk (gk)

]

i.e., Mfk (r) ≤ Mgk

[(
r

(σfk (gk)− ε)

) 1

ρfk
(gk)

]
,(2)
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and also for a sequence {rn} of values of r tending to infinity, we get

Mgk (r) ≥ Mfk

[
(σfk (gk)− ε) r

ρfk (gk)
n

]

i.e., Mfk (r) ≤ Mgk

[(
rn

(σfk (gk)− ε)

) 1

ρfk
(gk)

]
,(3)

(4) Mgk (r) ≤ Mfk

[
(σfk (gk) + ε) r

ρfk (gk)
n

]
,

where ε > 0 is any arbitrary positive number and k = 1, 2.

Case I. Let ρf1 (gk) < ρf1 (gi) where k, i = 1, 2 with gk 6= gi for
k 6= i.

Now from (1) and (4) we get for a sequence {rn} of values of r tending
to infinity that

(5) Mg1±g2 (rn) < Mg1 (rn) +Mg2 (rn) ,

which implies that

Mg1±g2 (rn)

< Mf1

[
(σf1 (gk) + ε) r

ρf1 (gk)
n

]
+Mf1

[
(σf1 (gi) + ε) r

ρf1(gi)
n

]
.

So we have

Mg1±g2 (rn)

< Mf1

[
(σf1 (gi) + ε) r

ρf1 (gi)
n

]

1 +

Mf1

[
(σf1 (gk) + ε) r

ρf1 (gk)
n

]

Mf1

[
(σf1 (gi) + ε) r

ρf1(gi)
n

]


 .

Since ρf1 (gk) < ρf1 (gi) , one can make the term
Mf1

[

(σf1
(gk)+ε)r

ρf1
(gk)

n

]

Mf1

[

(σf1
(gi)+ε)r

ρf1
(gi)

n

]

sufficiently small by taking n sufficiently large. Therefore in view of
Lemma 1 and the above inequality, we get for a sequence {rn} of values
of r tending to infinity that

Mg1±g2 (rn) < Mf1

[
(σf1 (gi) + ε) r

ρf1(gi)
n

]
(1 + ε1) .

That is,

Mg1±g2 (rn) < Mf1

[
α (σf1 (gi) + ε) r

ρf1(gi)
n

]
,

where α > (1 + ε1) .
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Now making α → 1+, we obtain from Theorem C for a sequence {rn}
of values of r tending to infinity that

M−1
f1

Mg1±g2 (rn) < (σf1 (gi) + ε) r
ρf1(gi)
n

and so

M−1
f1

Mg1±g2 (rn)

r
ρf1 (g1±g2)
n

< (σf1 (gi) + ε) .

Since ε > 0 is arbitrary, we get

σf1 (g1 ± g2) ≤ σf1 (gi) .

Further without any loss of generality, let ρf1 (g1) < ρf1 (g2) and
g = g1 ± g2. Then σf1 (g) ≤ σf1 (g2) . Also let g2 = ± (g − g1) and
in this case we obtain from Theorem C that ρf1 (g1) < ρf1 (g). So
σf1 (g2) ≤ σf1 (g) . Hence σf1 (g) = σf1 (g2) ⇒ σf1 (g1 ± g2) = σf1 (g2) .
Thus, σf1 (g1 ± g2) = σf1 (gi) (i = 1, 2) where ρf1 (gi) = max{ρf1 (gk) |
k, i = 1, 2} and ρf1 (g1) 6= ρf1 (g2) which is the first part of the theorem.

Case II. Now suppose that ρfi (g1) < ρfk (g1) where k, i = 1, 2 with
fi 6= fk (i 6= k) and g1 is of regular relative growth with respect to at
least any one of f1 or f2.

Therefore, in view of (2) and (3), we obtain for a sequence {rn} of
values of r tending to infinity that

(6) Mf1±f2 (rn) < Mf1 (rn) +Mf2 (rn) .

Thus we have

Mf1±f2 (rn)

< Mg1

[(
rn

(σfi (g1)− ε)

) 1

ρfi
(g1)

]
+Mg1

[(
rn

(σfk (g1)− ε)

) 1

ρfk
(g1)

]

and so

Mf1±f2 (rn)

< Mg1

[(
rn

(σfi (g1)− ε)

) 1

ρfi
(g1)

]


1 +

Mg1

[(
rn

(σfk
(g1)−ε)

) 1

ρfk
(g1)

]

Mg1

[(
rn

(σfi
(g1)−ε)

) 1

ρfi
(g1)

]



.
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Since ρfi (g1) < ρfk (g1) , we can make the term

Mg1





(

rn

(σfk
(g1)−ε)

) 1

ρfk
(g1)





Mg1





(

rn

(σfi (g1)−ε)

) 1

ρfi
(g1)





sufficiently small by taking n sufficiently large. Hence in view of Lemma
1 and the above inequality we get for a sequence {rn} of values of r
tending to infinity that

Mf1±f2 (rn) < Mg1

[(
rn

(σfi (g1)− ε)

) 1

ρfi
(g1)

]
(1 + ε1)

< Mg1

[
α

(
rn

(σfi (g1)− ε)

) 1

ρfi
(g1)

]
,

where α > (1 + ε1) .

Hence, making α → 1+, we obtain the first part of Theorem G for a
sequence {rn} of values of r tending to infinity that

(σfi (g1)− ε) r
ρfi(g1)
n < M−1

f1±f2
Mg1 (rn)

i.e., (σfi (g1)− ε) <
M−1

f1±f2
Mg1 (rn)

r
ρf1±f2

(g1)
n

.

Since ε > 0 is arbitrary, we find

σf1±f2 (g1) ≥ σfi (g1) .

Now without loss of generality, we may consider that ρf1 (g1) <
ρf2 (g1) and f = f1 ± f2. Then σf (g1) ≥ σf1 (g1) . Further let f1 =
(f ± f2). Therefore in view of the first part of Theorem G, ρf (g1) <
ρf2 (g1) and accordingly σf1 (g1) ≥ σf (g1) . Hence σf (g1) = σf1 (g1) ⇒
σf1±f2 (g1) = σf1 (g1) . So, σf1±f2 (g1) = σfi (g1) (i = 1, 2) where ρfi (g1)
= min{ρfk (g1) | k, i = 1, 2} provided ρf1 (g1) 6= ρf2 (g1) and g1 is of
regular relative growth with respect to at least any one of f1 or f2.

Case III. In this case, one can clearly assume that ρfi (g1) < ρfk (g1)
where k, i = 1, 2 with fi 6= fk (i 6= k) and g1 is of regular relative growth
with respect to at least any one of f1 or f2.

Then, in view of (2), we obtain for all sufficiently large values of r
that

(7) Mf1±f2 (r) < Mf1 (r) +Mf2 (r) .
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That is, we have

Mf1±f2 (r)

< Mg1

[(
r

(σfi (g1)− ε)

) 1

ρfi
(g1)

]
+Mg1

[(
r

(σfk (g1)− ε)

) 1

ρfk
(g1)

]
.

And so

Mf1±f2 (r)

< Mg1

[(
r

(σfi(g1)− ε)

) 1
ρfi

(g1)

]

1 +

Mg1

[(
r

(σfk
(g1)−ε)

) 1
ρfk

(g1)

]

Mg1

[(
r

(σfi
(g1)−ε)

) 1
ρfi

(g1)

]


 .(8)

As ρfi (g1) < ρfk (g1) , we can make the term

Mg1





(

r

(σfk (g1)−ε)

) 1

ρfk
(g1)





Mg1





(

r

(σfi
(g1)−ε)

) 1

ρfi
(g1)





sufficiently small by taking r sufficiently large and therefore using the
similar technique for all sufficiently large values of r as executed in the
proof of Case II we get from (8) that σf1±f2 (g1) = σfi (g1) (i = 1, 2)
where ρfi (g1) = min{ρfk (g1) | k, i = 1, 2} provided ρf1 (g1) 6= ρf2 (g1)
and g1 is of regular relative growth with respect to at least any one of
f1 or f2.

Thus combining Case II and Case III we obtain the second part of
the theorem.

The third part of the theorem is a natural consequence of Theorem I
(i), Theorem K and the first part and second part of the theorem. Hence
its proof is omitted.

Proof of Theorem 2. For any arbitrary positive number ε > 0,
we have from Definition 5 for all sufficiently large values of r that

(9) Mgk (r) ≤ Mfk

[
(τ fk (gk) + ε) rλfk

(gk)
]
,

Mgk (r) ≥ Mfk

[
(τfk (gk)− ε) rλfk

(gk)
]

i.e., Mfk (r) ≤ Mgk

[(
r

(τfk (gk)− ε)

) 1

λfk
(gk)

]
,(10)
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and for a sequence {rn} of values of r tending to infinity we have

Mgk (r) ≥ Mfk

[
(τ fk (gk)− ε) r

λfk
(gk)

n

]

i.e., Mfk (r) ≤ Mgk

[(
rn

(τ fk (gk)− ε)

) 1

λfk
(gk)

]
,(11)

(12) Mgk (r) ≤ Mfk

[
(τfk (gk) + ε) r

λfk
(gk)

n

]

where k = 1, 2.

Case I. Let us consider λf1 (gk) < λf1 (gi) where k, i = 1, 2 with
gk 6= gi (k 6= i) and at least g1 or g2 is of regular relative growth with
respect to f1.

Therefore from (5), (9) and (12) we get for a sequence {rn} of values
of r tending to infinity that

Mg1±g2 (rn)

< Mf1

[
(τ f1 (gk) + ε) r

λf1
(gk)

n

]
+Mf1

[
(τf1 (gi) + ε) r

λf1
(gi)

n

]
.

That is, we have

Mg1±g2(rn)

< Mf1

[
(τf1(gi) + ε)r

λf1
(gi)

n

]

1 +

Mf1

[
(τ f1(gk) + ε)r

λf1
(gk)

n

]

Mf1

[
(τf1(gi) + ε)r

λf1
(gi)

n

]


 .(13)

Since λf1 (gk) < λf1 (gi) , we can make the term
Mf1

[

(τf1(gk)+ε)r
λf1

(gk)
n

]

Mf1

[

(τf1 (gi)+ε)r
λf1

(gi)
n

]

sufficiently small by taking n sufficiently large. So with the help of
Lemma 1 and the second part of Theorem G and using the similar
technique of Case I of Theorem 1, we get from (13) that

τf1 (g1 ± g2) ≤ τf1 (gi) .

Now without loss of generality, let us suppose that λf1 (g1) < λf1 (g2)
and g = g1 ± g2. So τf1 (g) ≤ τf1 (g2) . Also let g2 = ± (g − g1) and in
this case we have from Theorem E that λf1 (g1) < λf1 (g). Therefore
τf1 (g2) ≤ τf1 (g) . Hence τf1 (g) = τf1 (g2) ⇒ τf1 (g1 ± g2) = τf1 (g2) .
Thus, τf1 (g1 ± g2) = τf1 (gi) (i = 1, 2) where λf1 (gi) = max{λf1 (gk) |
k, i = 1, 2} and λf1 (g1) 6= λf1 (g2).
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Case II. Let us consider that λf1 (gk) < λf1 (gi) where k = i = 1, 2
with gk 6= gi. Now, in view of (9), we get for all sufficiently large values
of r that

Mg1±g2 (r) < Mg1 (r) +Mg2 (r) .

That is, we have

Mg1±g2 (r)

< Mf1

[
(τ f1 (gk) + ε) rλf1

(gk)
]
+Mf1

[
(τ f1 (gi) + ε) rλf1

(gi)
]
.

And so

Mg1±g2(rn)

< Mf1

[
(τ f1(gi) + ε)rλf1

(gi)
]

1 +

Mf1

[
(τ f1(gk) + ε)rλf1

(gk)
]

Mf1

[
(τ f1(gi) + ε)rλf1

(gi)
]


 .(14)

As λf1 (gk) < λf1 (gi) , by taking r sufficiently large one can make the
term

Mf1

[
(τ f1 (gk) + ε) rλf1

(gk)
]

Mf1

[
(τ f1 (gi) + ε) rλf1

(gi)
]

sufficiently small and therefore for similar reasoning of Case-I we get
that τ f1 (g1 ± g2) = τ f1 (gi) | i = 1, 2 where λf1 (gi) = max{λf1 (gk) |
k = i = 1, 2} and λf1 (g1) 6= λf1 (g2) and hence details of its proof are
omitted.

Thus the first part of the theorem follows from Case I and Case II.

Case III. Now suppose that λfi(g1) < λfk(g1) where k = i = 1, 2
with fi 6= fk.

Now in view of (7) and (10) we have for all sufficiently large values
of r that

Mf1±f2 (r)

< Mg1

[(
r

(τfi (g1)− ε)

) 1

λfi
(g1)

]
+Mg1

[(
r

(τfk (g1)− ε)

) 1

λfk
(g1)

]
.
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We thus have

Mf1±f2 (r)

< Mg1

[(
r

(τfi (g1)− ε)

) 1

λfi
(g1)

]


1 +

Mg1

[(
r

(τfk (g1)−ε)

) 1

λfk
(g1)

]

Mg1

[(
r

(τfi (g1)−ε)

) 1

λfi
(g1)

]




.

Since λfi (g1) < λfk (g1) , one can make the term

Mg1





(

r

(τfk (g1)−ε)

) 1

λfk
(g1)





Mg1





(

r

(τfi (g1)−ε)

) 1

λfi
(g1)





sufficiently small by taking r sufficiently large. Therefore using the simi-
lar technique as executed in the proof of Case III of Theorem 1, it follows
from above arguments and Theorem E that

τf1±f2 (g1) ≥ τfi (g1) .

At this time without loss of generality, we may consider that λf1 (g1) <
λf2 (g1) and f = f1 ± f2. Then τf (g1) ≥ τf1 (g1) . Further let f1 =
(f ± f2). Therefore, in view of Theorem C, λf (g1) < λf2 (g1) and ac-
cordingly τf1 (g1) ≥ τf (g1) . Hence τf (g1) = τf1 (g1) ⇒ τf1±f2 (g1) =
τf1 (g1) . So, τf1±f2 (g1) = τfi (g1) | i = 1, 2 where λfi (g1) = min{λfk (g1) |
k = i = 1, 2} provided λf1 (g1) 6= λf2 (g1) .

Case IV. Now let us consider λfi (g1) < λfk (g1) where k = i = 1, 2
with fi 6= fk. Therefore in view of (6), (10) and (11) we obtain for a
sequence {rn} of values of r tending to infinity that

Mf1±f2 (rn)

< Mg1

[(
rn

(τ fi (g1)− ε)

) 1

λfi
(g1)

]
+Mg1

[(
rn

(τfk (g1)− ε)

) 1

λfk
(g1)

]
.

We thus have

Mf1±f2(rn)

< Mg1

[(
rn

(τ fi(g1)− ε)

) 1
λfi

(g1)

]

1 +

Mg1

[(
rn

(τfk (g1)−ε)

) 1
λfk

(g1)

]

Mg1

[(
rn

(τfi
(g1)−ε)

) 1
λfi

(g1)

]


 .(15)
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Since λfi (g1) < λfk (g1) , we can make the term

Mg1





(

rn

(τfk (g1)−ε)

) 1

λfk
(g1)





Mg1





(

rn

(τfi (g1)−ε)

) 1

λfi
(g1)





sufficiently small by taking n sufficiently large. Therefore using the sim-
ilar technique of Case II of Theorem 1, we obtain the conclusion that
τ f1±f2 (g1) = τ fi (g1) | i = 1, 2 where λfi (g1) = min {λfk (g1) | k = i = 1, 2}
provided λf1 (g1) 6= λf2 (g1) from (15).

So the second part of the theorem follows from Case III and Case IV.

The proof of the third part of the theorem is omitted as it can be
carried out in view of Theorem I (ii) and the above cases.

Proof of Theorem 3. Case I. By Lemma 3, f1 is transcendental.
Suppose that ρf1 (gk) < ρf1 (gi) where k = i = 1, 2 with gk 6= gi. Now
for any arbitrary ε > 0, we have from (1) for all sufficiently large values
of r that

(16) Mg1·g2 (r) ≤ Mg1 (r) ·Mg2 (r) .

We thus have

Mg1·g2 (r) ≤ Mf1

[(
σf1 (gk) +

ε

2

)
rρf1(gk)

]
·Mf1

[(
σf1 (gi) +

ε

2

)
rρf1(gi)

]
.

Since ρf1 (gk) < ρf1 (gi) , we get for all sufficiently large values of r

that (σf1 (gi) + ε)rρf1 (gi) > (σf1 (gk) + ε)rρf1 (gk). ThereforeMf1 [(σf1 (gi)

+ε)rρf1 (gi)] > Mf1 [(σf1 (gk) +ε)rρf1 (gk)] and from above arguments it
follows for all sufficiently large values of r that

(17) Mg1·g2 (r) < Mf1

[(
σf1 (gi) +

ε

2

)
rρf1 (gi)

]2
.

Let us observe that

δ1 :=
σf1 (gi) + ε

σf1 (gi) +
ε
2

> 1

⇒ log (σf1 (gi) + ε) rρf1 (gi) > log
(
σf1 (gi) +

ε

2

)
rρf1(gi)

⇒
log (σf1 (gi) + ε) rρf1(gi)

log
(
σf1 (gi) +

ε
2

)
rρf1(gi)

= δ (say) > 1

⇒ log (σf1 (gi) + ε) rρf1 (gi) = δ log
(
σf1 (gi) +

ε

2

)
rρf1 (gi) .(18)
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Since f1 has the Property (A), in view of Lemma 2, Theorem D and
(18) we obtain from (17) for all sufficiently large values of r that

Mg1·g2 (r) < Mf1

[((
σf1 (gi) +

ε

2

)
rρf1(gi)

)δ]

i.e., Mg1·g2 (r) < Mf1

[
(σf1 (gi) + ε) rρf1(gi)

]
.

That is, we have

M−1
f1

Mg1·g2 (r)

rρf1(gi)
< (σf1 (gi) + ε)

i.e.,
M−1

f1
Mg1·g2 (r)

rρf1(g1·g2)
< (σf1 (gi) + ε)

i.e., σf1 (g1 · g2) ≤ σf1 (gi) .(19)

In order to establish the equality of (19), let us restrict the functions

f1 and gi with the property 2ρf1 (gi) ≤ 1 (i = 1, 2). Now let h, h1, h2 and

k be any four entire functions such that h = h2

h1
and ρk (h1) < ρk (h2) .

So T
h
(r) = T

h2
h1

(r) ≤ T
h2

(r) + Th1
(r) + O(1). Now, in view of Lemma

4, and as in the line of the procedure of the above proof, it follows that

σk (h) = σk

(
h2

h1

)
≤ 2ρk(h2)σk (h2) .

Further without loss of any generality, let g = g1 · g2 and ρf1 (g1) <
ρf1 (g2) = ρf1 (g) . Then σf1 (g) ≤ σf1 (g2) . Also let g2 = g

g1
and in

this case we obtain from above arguments that σf1 (g2) ≤ σf1 (g) .
Hence σf1 (g) = σf1 (g2) ⇒ σf1 (g1 · g2) = σf1 (g2) . Thus, σf1 (g1 · g2) =
σf1 (gi) | i = 1, 2 where ρf1 (gi) = max {ρf1 (gk) | k = i = 1, 2} and
ρf1 (g1) 6= ρf1 (g2) .

Next we may suppose that g = g1
g2

with g1, g2, g are all entire functions

and also suppose that ρf1 (g2) < ρf1 (g1). We have g1 = g ·g2 . Therefore

σf1 (g1) = σf1 (g) as ρf1 (g) > ρf1 (g2) and 2ρf1 (g1) ≤ 1.

Case II. In view of Lemma 3, f1 is transcendental. Now let ρf1 (gk) <
ρf1 (gi) where k, i = 1, 2 with gk 6= gi. Therefore from (1) and (4) it
follows for a sequence {rn} of values of r tending to infinity that

(20) Mg1·g2 (rn) ≤ Mg1 (rn) ·Mg2 (rn) .

That is, we have

Mg1·g2 (rn)

≤ Mf1

[(
σf1 (gk) +

ε

2

)
r
ρf1 (gk)
n

]
·Mf1

[(
σf1 (gi) +

ε

2

)
r
ρf1 (gi)
n

]
.(21)
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Since ρf1 (gk) < ρf1 (gi) , so for a sequence of values of r tending to
infinity

Mf1

[(
σf1 (gi) +

ε

2

)
r
ρf1(gi)
n

]
> Mf1

[(
σf1 (gk) +

ε

2

)
r
ρf1(gk)
n

]

holds. Therefore, from (21), we have

(22) Mg1·g2 (rn) < Mf1

[(
σf1 (gi) +

ε

2

)
r
ρf1 (gi)
n

]2
.

Now using the similar technique for a sequence of values of r tending
to infinity as explored in the proof of Case I, the second part of Theorem
3 I(ii) follows from (22).

Therefore the first part of theorem follows Case I and case II.

Case III. By Lemma 3, g1 is transcendental. Suppose that ρfi (g1) <
ρfk (g1) (k, i = 1, 2) with fi 6= fk and g1 is of regular relative growth
with respect to at least any one of f1 or f2.

Therefore in view of (2) and (3), we obtain for a sequence {rn} of
values of r tending to infinity that

(23) Mf1·f2 (rn) ≤ Mf1 (rn) ·Mf2 (rn) .

That is, we have

Mf1·f2 (rn)

≤ Mg1



(

rn(
σfi (g1)−

ε
2

)
) 1

ρfi
(g1)


 ·Mg1



(

rn(
σfk (g1)−

ε
2

)
) 1

ρfk
(g1)


 .

Now Mg1

[(
rn

(σfi
(g1)−

ε
2
)

) 1

ρfi
(g1)

]
> Mg1

[(
rn

(σfk
(g1)−

ε
2
)

) 1

ρfk
(g1)

]

because for all sufficiently large values of n and ρfi (g1) < ρfk (g1) ,(
rn

(σfi
(g1)−

ε
2
)

) 1

ρfi
(g1)

>

(
rn

(σfk
(g1)−

ε
2
)

) 1

ρfk
(g1)

hold. Therefore from above

arguments, it follows for a sequence of values of r tending to infinity
that

(24) Mf1·f2 (rn) < Mg1



(

rn(
σfi (g1)−

ε
2

)
) 1

ρfi
(g1)



2

.

Now we observe that

δ1 :=
σfi (g1)−

ε
2

σfi (g1)− ε
> 1
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⇒ log

(
rn

(σfi (g1)− ε)

) 1

ρfi
(g1)

> log

(
rn(

σfi (g1)−
ε
2

)
) 1

ρfi
(g1)

⇒

log

(
rn

(σfi
(g1)−ε)

) 1

ρfi
(g1)

log

(
rn

(σfi
(g1)−

ε
2
)

) 1

ρfi
(g1)

= δ (say) > 1

⇒ log

(
rn

(σfi (g1)− ε)

) 1

ρfi
(g1)

= δ log

(
rn(

σfi (g1)−
ε
2

)
) 1

ρfi
(g1)

.(25)

Since g1 has the Property (A), in view of Lemma 2, the first part of
Theorem H and (25) we obtain from (24) for a sequence {rn} of values
of r tending to infinity that

Mf1·f2 (rn) < Mg1



(

rn(
σfi (g1)−

ε
2

)
) δ

ρfi
(g1)




< Mg1

[(
rn

(σfi (g1)− ε)

) 1

ρfi
(g1)

]
.

That is, we have

(σfi (g1)− ε) r
ρfi(g1)
n < M−1

f1·f2
Mg1 (rn)

i.e., (σfi (g1)− ε) <
M−1

f1·f2
Mg1 (rn)

r
ρf1·f2(g1)
n

.

Since ε > 0 is arbitrary, it follows from above arguments that

(26) σf1·f2 (g1) ≥ σfi (g1) .

In order to establish the equality of (26), let us restrict the functions

fi and g1 with the property 2ρfi (g1) ≥ 1 (i = 1, 2). Now let h, h1, h2 and

k be any four entire functions such that h = h1

h2
and ρh1

(k) < ρh2
(k) .

So T
h
(r) = T

h1
h2

(r) ≤ T
h1

(r) + Th2
(r) + O(1). Now in view of Lemma

4 and as in the line of procedure of the above proof, it follows that
σh1

(k)

2
ρh1

(k) ≤ σh (k) = σh1
h2

(k) .

Further without loss of any generality, let f = f1 · f2 and ρf1 (g1) =

ρf (g1) < ρf2 (g1) . Then σf (g1) ≥ σf1 (g1) . Also let f1 = f
f2

and in
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this case we obtain from above arguments that σf1 (g1) ≥
σf (g1)

2
ρf (g1)

. Hence

σf (g1) = σf1 (g1) implies that σf1·f2 (g1) = σf1 (g1). Thus, σf1·f2 (g1) =
σfi (g1) (i = 1, 2), where ρfi (g1) = min {ρfk (g1)} (k = 1, 2), ρf1 (g1) 6=

ρf2 (g1) and 2ρfi (g1) ≥ 1 (i = 1, 2).

Next one may suppose that f = f2
f1

with f1, f2, f are all entire and

ρf2 (g1) < ρf1 (g1). We have f2 = f · f1 . Therefore σf2 (g1) = σf (g1) as

ρf1 (g1) > ρf (g1) and 2ρf1 (g1) ≥ 1 (i = 1, 2).

Case IV. By Lemma 3, g1 is transcendental. Suppose ρfi (g1) <
ρfk (g1) (k, i = 1, 2) where fi 6= fk (i 6= k) and g1 is of regular relative
growth with respect to at least any one of f1 or f2.

Therefore in view of (2) we obtain for all sufficiently large values of
r that

(27) Mf1·f2 (r) ≤ Mf1 (r) ·Mf2 (r) .

That is, we have

Mf1·f2 (r)

≤ Mg1



(

r(
σfi (g1)−

ε
2

)
) 1

ρfi
(g1)


 ·Mg1



(

r(
σfk (g1)−

ε
2

)
) 1

ρfk
(g1)


 .

Therefore Mg1

[(
r

(σfi
(g1)−

ε
2
)

) 1

ρfi
(g1)

]
> Mg1

[(
r

(σfk
(g1)−

ε
2
)

) 1

ρfk
(g1)

]

as ρfi (g1) < ρfk (g1) and from above arguments it follows all sufficiently
large values of r that

(28) Mf1·f2 (r) < Mg1



(

r(
σfi (g1)−

ε
2

)
) 1

ρfi
(g1)



2

.

Therefore, using the similar technique as in the proof of Case III, for
all sufficiently large values of r, Theorem 3 II (ii) follows from (28).

Thus the second part of the theorem follows from Case III and Case
IV.

Proof of the third part of the theorem is omitted as it can be carried
out in view of Theorem J (ii) and the above cases.

Proof of Theorem 4. Case I. By Lemma 3, f1 is transcendental.
Suppose that λf1 (gk) < λf1 (gi) (k, i = 1, 2) with gk 6= gi (k 6= i) and
at least g1 or g2 is of regular relative growth with respect to f1. Now for
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any arbitrary ε > 0, from (9), (12) and (20), we obtain for a sequence
{rn} of values of r tending to infinity that

Mg1·g2 (rn) ≤ Mf1

[(
τ f1 (gk) +

ε

2

)
r
λf1

(gk)
n

]
·Mf1

[(
τf1 (gi) +

ε

2

)
r
λf1

(gi)
n

]
.

As λf1 (gk) < λf1 (gi), we get from above arguments for a sequence
{rn} of values of r tending to infinity that

(29) Mg1·g2 (rn) < Mf1

[(
τf1 (gi) +

ε

2

)
r
λf1

(gi)
n

]2
.

Now using the similar technique as explored in the proof of Case II of
Theorem 3, we have from (29) and the second part of Theorem H that

(30) τf1 (g1 · g2) ≤ τf1 (gi) .

In order to establish the equality of (30), let us restrict the functions

f1 and gi with the property 2λf1
(gi) ≤ 1 (i = 1, 2). Now let h, h1, h2 and

k be any four entire functions such that h = h2

h1
and λk (h1) < λk (h2) .

So T
h
(r) = T

h2
h1

(r) ≤ T
h2

(r) + Th1
(r) + O(1). Now in view of Lemma

4 and as in the line of procedure of the above proof, it follows that

τk (h) = τk

(
h2

h1

)
≤ τλk(h2)σk (h2) .

Further without loss of generality, let g = g1 · g2 and λf1 (g1) <
λf1 (g2) = λf1 (g) . Then τf1 (g) ≤ τf1 (g2) . Also let g2 = g

g1
and in this

case we obtain from above arguments that τf1 (g2) ≤ 2λf1
(g)τf1 (g) ≤

σf1 (g) . Hence τf1 (g) = τf1 (g2) ⇒ τf1 (g1 · g2) = τf1 (g2) . Thus, τf1(g1 ·
g2) = σf1 (gi) | i = 1, 2 where λf1 (gi) = max {λf1 (gk)} (k, i = 1, 2),

λf1 (g1) 6= λf1 (g2) and 2λf1
(gi) ≤ 1 (i = 1, 2).

Next we may suppose that g = g1
g2

with g1, g2, g all entire functions

and also suppose that λf1 (g2) < λf1 (g1). We have g1 = g ·g2. Therefore

λf1 (g1) = λf1 (g) as λf1 (g) > λf1 (g2) and 2λf1
(g1) ≤ 1.

Case II. In view of Lemma 3, f1 is transcendental. Now let λf1 (gk) <
λf1 (gi) (k, i = 1, 2) with gk 6= gi (k 6= i) and at least g1 or g2 is of regular
relative growth with respect to f1. Therefore from (16) and (9) it follows
for all sufficiently large values of r that

Mg1·g2 (r)

≤ Mf1

[(
τ f1 (gk) +

ε

2

)
rλf1

(gk)
]
·Mf1

[(
τ f1 (gi) +

ε

2

)
rλf1

(gi)
]
.(31)

Since λf1 (gk) < λf1 (gi) , so for all sufficiently large values of r,

Mf1

[(
τ f1 (gi) +

ε

2

)
rλf1

(gi)
]
> Mf1

[(
τ f1 (gk) +

ε

2

)
rλf1

(gk)
]
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holds and therefore from (31) we get for all sufficiently large values of r
that

(32) Mg1·g2 (r) < Mf1

[(
τ f1 (gi) +

ε

2

)
rλf1

(gi)
]2

.

Now using the similar technique of Case I of Theorem 3, Theorem 4 I
(i) follows from (32).

Therefore combining Case I and Case II, the first part of the theorem
follows.

Case III. By Lemma 3, g1 is transcendental. Suppose that λfi (g1) <
λfk (g1) (k, i = 1, 2) with fi 6= fk (i 6= k).

Therefore, in view of (10), we obtain from (27) for all sufficiently
large values of r that

Mf1·f2 (r)

≤ Mg1



(

r(
τfi (g1)−

ε
2

)
) 1

λfi
(g1)


 ·Mg1



(

r(
τfk (g1)−

ε
2

)
) 1

λfk
(g1)


 .

As λfi (g1) < λfk (g1), we find from above arguments that, for all
sufficiently large values of r,

(33) Mf1·f2 (r) < Mg1



(

rn(
τfi (g1)−

ε
2

)
) 1

λfi
(g1)



2

.

Further using the similar technique as explored in the proof of case
II in Theorem 3, we have from (33) and Theorem F that

(34) τf1·f2 (g1) ≥ τfi (g1) .

In order to establish the equality of (34), let us restrict the functions

fi and g1 with the property 2λfi
(g1) ≥ 1 (i = 1, 2). Now let h, h1, h2 and

k be any four entire functions such that h = h1

h2
and λh1

(k) < λh2
(k) .

So T
h
(r) = T

h1
h2

(r) ≤ T
h1

(r) + Th2
(r) + O(1). Now in view of Lemma

4 and as in the line of procedure of the above proof, it follows that
τh1 (k)

2
λh1

(k) ≤ τh (k) = τh1
h2

(k) .

Further without loss of generality, let f = f1 · f2 and λf1 (g1) =

λf (g1) < λf2 (g1) . Then τf (g1) ≥ τf1 (g1) . Also let f1 = f
f2

and in

this case we obtain from above arguments that τf1 (g1) ≥
τf (g1)

2
λf (g1)

. Hence

τf (g1) = τf1 (g1) implies that τf1·f2 (g1) = τf1 (g1) . Thus, τf1·f2 (g1) =
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τfi (g1) (i = 1, 2) where λfi (g1) = min {λfk (g1)} (k = 1, 2), λf1 (g1) 6=

λf2 (g1) and 2λfi
(g1) ≥ 1 (i = 1, 2).

Next one may suppose that f = f2
f1

with f1, f2, f are all entire and

λf2 (g1) < λf1 (g1). We have f2 = f · f1. Therefore τf2 (g1) = τf (g1) as

λf1 (g1) > λf (g1) and 2λf1
(g1) ≥ 1 (i = 1, 2).

Case IV. By Lemma 3, g1 is transcendental. Suppose λfi (g1) <
λfk (g1) (k, i = 1, 2) with fi 6= fk (i 6= k).

Therefore, in view of (23), (10) and (11), we obtain that, for a se-
quence {rn} of values of r tending to infinity,

Mf1·f2 (rn) ≤ Mg1



(

rn(
τ fi (g1)−

ε
2

)
) 1

λfi
(g1)


·Mg1



(

rn(
τfk (g1)−

ε
2

)
) 1

λfk
(g1)


 .

Therefore Mg1

[(
rn

(τfi (g1)−
ε
2
)

) 1

λfi
(g1)

]
> Mg1

[(
rn

(τfk (g1)−
ε
2
)

) 1

λfk
(g1)

]
as

λfi (g1) < λfk (g1) and from above arguments it follows that, for a se-
quence {rn} of values of r tending to infinity,

(35) Mf1·f2 (rn) < Mg1



(

rn(
τ fi (g1)−

ε
2

)
) 1

λfi
(g1)



2

.

Therefore using the similar technique, for all sufficiently large values
of r , as in the proof of Case III , the second part of Theorem 4 II (ii)
follows from (35).

Thus the second part of the theorem follows from Case III and Case
IV.

Proof of the third part of the theorem is omitted as it can be carried
out in view of Theorem J (ii) and the above cases.

Proof of Theorem 5. Case I. Suppose that ρf1 (g1) = ρf1 (g2)
(0 < ρf1 (g1) , ρf1 (g2) < ∞). Now in view of Theorem C it is easy to see
that ρf1 (g1 ± g2) ≤ ρf1 (g1) = ρf1 (g2) . If possible let

(36) ρf1 (g1 ± g2) < ρf1 (g1) = ρf1 (g2) .

Let σf1 (g1) 6= σf1 (g2) . Then in view of Theorem K and (36) we
obtain that σf1 (g1) = σf1 (g1 ± g2 ∓ g2) = σf1 (g2) which is a contra-
diction. Hence ρf1 (g1 ± g2) = ρf1 (g1) = ρf1 (g2) . Similarly with the
help of the first part of Theorem 1, one can obtain the same conclusion
under the hypothesis σf1 (g1) 6= σf1 (g2) . This proves the first part of
the theorem.
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Case II. Let us consider that ρf1(g1) = ρf2(g1) (0 < ρf1(g1), ρf2(g1) <
∞) and g1 is of regular relative growth with respect to at least any one
of f1 or f2. Therefore in view of the first part of Theorem G, it follows
that ρf1±f2 (g1) ≥ ρf1 (g1) = ρf2 (g1) and if possible let

(37) ρf1±f2 (g1) > ρf1 (g1) = ρf2 (g1) .

Let us consider that σf1 (g1) 6= σf2 (g1) . Then. in view of the Theorem
1 II (i) and (37) we obtain that σf1 (g1) = σf1±f2∓f2 (g1) = σf2 (g1)
which is a contradiction. Hence ρf1±f2 (g1) = ρf1 (g1) = ρf2 (g1) . Also
in view of Theorem 1 II (ii) one can derive the same conclusion for
the condition σf1 (g1) 6= σf2 (g1) and therefore the second part of the
theorem is established.

Proof of Theorem 6. Case I. Let λf1(g1) = λf1(g2) (0 < λf1(g1),
λf1(g2) < ∞) and at least g1 or g2 is of regular relative growth with
respect to f1. Now, in view of Theorem G(ii), it is easy to see that
λf1 (g1 ± g2) ≤ λf1 (g1) = λf1 (g2) . If possible let

(38) λf1 (g1 ± g2) < λf1 (g1) = λf1 (g2) .

Let τf1 (g1) 6= τf1 (g2) . Then in view of Theorem 2 I (i) and (38) we
obtain that τf1 (g1) = τf1 (g1 ± g2 ∓ g2) = τf1 (g2) which is a contradic-
tion. Hence λf1 (g1 ± g2) = λf1 (g1) = λf1 (g2) . Similarly with the help
of Theorem 2 I (ii) , one can establish the same conclusion under the
hypothesis σf1 (g1) 6= σf1 (g2) . This prove the first part of the theorem.

Case II. Let us consider that λf1 (g1) = λf2 (g1) (0 < λf1(g1),
λf2 (g1) < ∞). Therefore in view of Theorem E it follows that

λf1±f2(g1) ≥ λf1(g1) = λf2(g1)

and if possible let

(39) λf1±f2 (g1) > λf1 (g1) = λf2 (g1) .

Suppose τf1 (g1) 6= τf2 (g1) . Then in view of Theorem 2 II (i) and
(39) we obtain that τf1 (g1) = τf1±f2∓f2 (g1) = τf2 (g1) which is a con-
tradiction. Hence λf1±f2 (g1) = λf1 (g1) = λf2 (g1) . Analogously with
the help of Theorem 2 II (ii), the same conclusion can also be derived
under the condition τ f1 (g1) 6= τ f2 (g1) and therefore the second part of
the theorem is established.

Proof of Theorem 7. Case I. Suppose that ρf1 (g1) = ρf1 (g2)
(0 < ρf1 (g1) , ρf1 (g2) < ∞). Now in view of Theorem D it is easy to see
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that ρf1 (g1 · g2) ≤ ρf1 (g1) = ρf1 (g2) . If possible let

(40) ρf1 (g1 · g2) < ρf1 (g1) = ρf1 (g2) .

Let σf1 (g1) 6= σf1 (g2) . Now in view of Theorem 3 I (i) and (40) we

obtain that σf1 (g1) = σf1

(
g1·g2
g2

)
= σf1 (g2) which is a contradiction.

Hence ρf1 (g1 · g2) = ρf1 (g1) = ρf1 (g2) . Similarly with the help of The-
orem 3 I (ii), one can obtain the same conclusion under the hypothesis
σf1 (g1) 6= σf1 (g2) . This proves the first part of the theorem.

Case II. Let us consider that ρf1(g1) = ρf2(g1) (0 < ρf1(g1), ρf2(g1) <
∞) and g1 is of regular relative growth with respect to at least any one
of f1 or f2. Therefore in view of the first part of Theorem H, it follows
that ρf1·f2 (g1) ≥ ρf1 (g1) = ρf2 (g1) and if possible let

(41) ρf1·f2 (g1) > ρf1 (g1) = ρf2 (g1) .

Further suppose that σf1 (g1) 6= σf2 (g1) . Therefore in view of the first
part of Theorem 3 II(i) and (37), we obtain that σf1 (g1) = σ f1·f2

f2

(g1) =

σf2 (g1) which is a contradiction. Hence ρf1·f2 (g1) = ρf1 (g1) = ρf2 (g1) .
Likewise with the help of Theorem 3 II (ii), one can obtain the same
conclusion under the hypothesis σf1 (g1) 6= σf2 (g1) . This proves the
second part of the theorem.

We omit the proof for quotient as it is an easy consequence of the
above two cases.

Proof of Theorem 8. Case I. Let λf1(g1) = λf1(g2) (0 < λf1(g1),
λf1(g2) < ∞) and at least g1 or g2 is of regular relative growth with
respect to f1. Now in view of Theorem H (ii) it is easy to see that
λf1 (g1 · g2) ≤ λf1 (g1) = λf1 (g2) . If possible let

(42) λf1 (g1 · g2) < λf1 (g1) = λf1 (g2) .

Also let τf1 (g1) 6= τf1 (g2) . Then in view of Theorem 4 I (i) and (42) ,

we obtain that τf1 (g1) = τf1

(
g1·g2
g2

)
= τf1 (g2) which is a contradiction.

Hence λf1 (g1 · g2) = λf1 (g1) = λf1 (g2) . Analogously with the help of
Theorem 4 I (ii), the same conclusion can also be derived under the
condition τ f1 (g1) 6= τ f1 (g2). Hence the first part of the theorem is
established.

Case II. Let us consider that λf1(g1) = λf2(g1) (0 < λf1(g1), λf2(g1) <
∞). Therefore in view of Theorem F it follows that λf1·f2 (g1) ≥ λf1 (g1) =
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λf2 (g1) and if possible let

(43) λf1·f2 (g1) > λf1 (g1) = λf2 (g1) .

Further let τf1 (g1) 6= τf2 (g1) . Then in view of the second part of
Theorem 4 II (i) and (43) we obtain that τf1 (g1) = τ f1·f2

f2

(g1) = τf2 (g1)

which is a contradiction. Hence λf1·f2 (g1) = λf1 (g1) = λf2 (g1) . Simi-
larly by Theorem 4 II (ii), we get the same conclusion when τ f1 (g1) 6=
τ f2 (g1) and therefore the second part of the theorem follows.

We omit the proof for quotient as it is an easy consequence of the
above two cases.

5. Concluding Remarks

In this paper, we investigate certain properties of relative type (rel-
ative lower type) and relative weak type of entire functions. Here we
actually prove Theorem 1 to Theorem 4 under some different conditions
stated in Theorem A to Theorem J, respectively. Moreover, the treat-
ment of these notions may also be extended for meromorphic functions,
in the field of slowly changing functions and also in case of entire or mero-
morphic functions of several complex variables. Further some natural
questions may arise about the sum and product properties for relative

type (relative lower type) and relative weak type of entire functions when
the conditions of Theorem 5 to Theorem 8 are, respectively, provided.
Answers of these last questions are left to the interested readers or the
involved authors for future study in this research subject.
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