YANG-MILLS CONNECTIONS IN THE BUNDLE OF AFFINE ORTHONORMAL FRAMES

Hyun Woong Kim, Joon-Sik Park, and Yong-Soo Pyo*

Abstract

We get a necessary and sufficient condition for a generalized affine connection in the affine orthonormal frame bundle over a smooth manifold (M, g) to be a Yang-Mills connection.

1. Introduction

Let (M, g) be an n-dimensional Riemannian manifold, $A(M)(M$, $\left.A(n ; R):=G L(n ; R) \times R^{n}\right)$ the bundle of affine frames, and $O(M, g)$ the bundle of orthonormal frames over (M, g). Let $A O(M, g)$ be a principal fiber bundle over the manifold (M, g) with group $A O(n ; R):=O(n ; R) \times$ R^{n}, which is a subbundle of $A(M)$. In this paper, we call the bundle $A O(M, g)$ the affine orthonormal frame bundle over (M, g). Let $\widetilde{\gamma}$: $A O(M, g) \rightarrow O(M, g)=A O(M, g) / R^{n}$ be the natural projection, and $\widetilde{\omega}$ an arbitrarily given connection in $A O(M, g)$. Let ω (resp. φ) be the connection form (resp. 1-form) on $O(M, g)$ such that $\widetilde{\gamma}^{\star} \widetilde{\omega}=\omega+\varphi$. Then we get the following results:
(1) Assume the linear connection $\omega\left(\widetilde{\gamma}^{*} \widetilde{\omega}=\omega+\varphi\right)$ becomes a YangMills connection in $O(M, g)$. Then we obtain a necessary and sufficient condition for the generalized affine connection form $\widetilde{\omega}$ in $A O(M, g)$ to become a Yang-Mills connection (cf. Theorem 4.1).
(2) Assume the 1 -form $\varphi\left(\widetilde{\gamma}^{\star} \widetilde{\omega}=\omega+\varphi\right)$ on $O(M, g)$ is the canonical 1-form on $O(M, g)$, i.e., $\varphi(X):=u^{-1}\left(\pi_{\star}(X)\right)$ for $X \in T_{u}(O(M, g)) \quad(u \in$ $(O(M, g))$. And, assume the linear connection ω becomes a Yang-Mills connection. Then we obtain a necessary and sufficient condition for the affine connection form $\widetilde{\omega}$ in $A O(M, g)$ to become a Yang-Mills connection (cf. Theorem 4.2).

[^0](3) As an application of (1) and (2), let $G=M$ be a compact connected semisimple Lie group, \mathfrak{g} the Lie algebra of G, and g the canonical Riemannian metric which is defined by the Killing form of the Lie algebra \mathfrak{g} of G. Then, the linear connection form in the orthonormal frame bundle by the Levi-Civita connection for g becomes a Yang-Mills connection in $O(M, g)$, but the corresponding affine connection in $A O(M, g)$ does not become a Yang-Mills connection (cf. Theorem 4.4).

2. Preliminaries

In general, when we regard R^{n} as an affine space, we denote it by A^{n}. The group $A(n ; R)$ of all affine transformations of A^{n} is represented by the group of all matrices of the form

$$
\widetilde{a}=\left(\begin{array}{ll}
a & \xi \\
0 & 1
\end{array}\right)
$$

where $a=\left(a_{\tilde{j}}^{i}\right)_{i, j} \in G L(n ; R)$ and $\xi=\left(\xi^{i}\right)\left(\xi \in R^{n}\right)$ is a column vector. The element \widetilde{a} maps a point η of A^{n} into $a \eta+\xi$. We have the following exact sequence:

$$
0 \rightarrow R^{n} \rightarrow A(n ; R) \rightarrow G L(n ; R) \rightarrow 1
$$

Let (M, g) be an n-dimensional Riemannian manifold, $A(M)(M$, $\left.A(n ; R)=: G L(n ; R) \times R^{n}\right)$ the bundle of affine frames over M, and $O(M, g)$ the bundle of orthonormal frames over (M, g). Let $A O(M, g)$ be the principal fibre bundle over (M, g) with group $A O(n ; R)=O(n ; R) \times$ R^{n} which is a subbundle of $A(M)$. In this paper, we call the bundle $A O(M, g)$ the affine orthonormal frame bundle over (M, g). Let $\widetilde{\gamma}$: $O(M, g) \rightarrow A O(M, g)$ be the natural injection together with the group homomorphism $\gamma: O(n ; R) \hookrightarrow A O(n ; R)$, and $\widetilde{\omega}$ an arbitrarily given Ehresmann connection (form) in $A O(M, g)$, i.e.

$$
\begin{align*}
& \widetilde{\omega}\left(X^{\star}\right)=X \quad\left(X \in \mathfrak{a o}(n ; R)=\mathfrak{o}(n ; R)+R^{n}(\text { semidirect sum })\right), \\
& R_{g}{ }^{\star} \widetilde{\omega}=\operatorname{Ad}\left(g^{-1}\right) \widetilde{\omega} \quad(g \in A(n ; R)) \tag{2.1}
\end{align*}
$$

where $\mathfrak{a o}(n ; R)$ (resp. $\mathfrak{o}(n ; R)$) is the Lie algebra of $A O(n ; R)$ (resp. $O(n ; R)), X^{\star}$ is the fundamental vector field corresponding to $X \in$ $\mathfrak{a o}(n ; R)$ which is defined on $A O(M, g)$, and $R_{g}{ }^{*} \widetilde{\omega}$ is the pull back of $\widetilde{\omega}$ by the action R_{g} on $A O(M, g)$. Let ω (resp. φ) be the Ehresmann connection form (resp. the tensorial 1-form) of type $\left(\operatorname{Ad}(A O(n ; R)), R^{n}\right)$ on $O(M, g)$ such that $\widetilde{\gamma}^{\star} \widetilde{\omega}=\omega+\varphi$ (cf. [1]).

In this paper, we obtain the following results:
(1) Assume ω becomes a Yang-Mills connection in $O(M, g)$. Then we obtain a necessary and sufficient condition for the connection form $\widetilde{\omega}$ in $A O(M, g)$ to become a Yang-Mills connection (cf. Theorem 4.1).
(2) Assume the 1 -form $\varphi\left(\widetilde{\gamma}^{\star} \widetilde{\omega}=\omega+\varphi\right)$ on $O(M, g)$ is the canonical 1-form on $O(M, g)$, i.e., $\varphi(X):=u^{-1}\left(\pi_{\star}(X)\right)$ for $X \in T_{u}(O(M, g)) \quad(u \in$ $(O(M, g))$. And, assume ω becomes a Yang-Mills connection. Then we obtain a necessary and sufficient condition for the connection form $\widetilde{\omega}$ in $A O(M, g)$ to become a Yang-Mills connection (cf. Theorem 4.2).
(3) Let $G=M$ be a compact connected semisimple Lie group, \mathfrak{g} the Lie algebra of G, and g_{o} the canonical Riemannian metric which is defined by the Killing form of the Lie algebra \mathfrak{g} of G. Then, the linear connection form A in the orthonormal frame bundle by the LeviCivita connection of g_{o} becomes a Yang-Mills connection in $O(M, g)$, but the corresponding affine connection $\widetilde{A}(\widetilde{A}=A+\theta)$ in $A O(M, g)$ does not become a Yang-Mills connection, where $\theta(X):=u^{-1}\left(\pi_{\star}(X)\right)$ for $X \in T_{u}(O(M, g))(u \in(O(M, g))$ (cf. Theorem 4.4).

Traditionally, the words 'linear connection' and 'affine connection' have been used interchangeably ($[1$, Theorem 3.3, p.129]). But, strictly speaking, a linear connection is a connection in $L(M)(\supset O(M, g))$, and an affine connection is a connection in $A(M)(\supset A O(M, g))$.

By virtue of Theorem 4.4, we show the fact that there exists a YangMills linear connection in $O(M, g)$ of which the corresponding affine connection in $A O(M, g)$ does not become a Yang-Mills connection.

3. Yang-Mills connections in principal fibre bundles

Let $P(M, G)$ be a principal fiber bundle with semisimple Lie group G over an n-dimensional closed (compact and connected) Riemannian manifold (M, g), and \mathfrak{g} the Lie algebra of the structure group G, and $\{U, V, W, \ldots\}$ an open covering of M generated by local triviality of P. Let the mappings $\phi_{U V}: U \cap V \rightarrow G$ corresponding to the open covering $\{U, V, W, \ldots\}$ of M be transition functions. If the family $A=$ $\left\{A_{U}, A_{V}, A_{W}, \ldots\right\}$ of \mathfrak{g}-valued 1-forms which are defined on open subsets U, V, W, \ldots of M satisfies the following cocycle condition

$$
\begin{equation*}
\left(A_{V}\right)_{x}=L_{\phi_{V U}(x)_{\star}}\left(d\left(\phi_{U V}\right)\right)_{x}+\operatorname{Ad}\left(\phi_{V U}(x)\right)\left(A_{U}\right)_{x} \quad(x \in U \cap V), \tag{3.1}
\end{equation*}
$$

then A is said to be a connection (form) ([2, Definition 3.1.1, p.74]) in $P(M, G)$. Let $\left\{\sigma_{U}, \sigma_{V}, \sigma_{W}, \ldots\right\}$ be the family of local cross sections of the open neighborhoods U, V, W, \ldots into P. Let \mathfrak{A}_{P} be the space of all connections in P, and \mathfrak{C}_{P} the space of all Ehresmann connections in P
which are defined as in (2.1). Then, \mathfrak{A}_{P} and \mathfrak{C}_{P} are 1-1 correspondent as follows ([2, Theorem 3.1.4, p.76]):
if we put $\sigma_{U}{ }^{\star} \omega=: A_{U}$ for a given $\omega \in \mathfrak{C}_{P}$, then the family $A:=$ $\left\{A_{U}, A_{V}, A_{W}, \ldots\right\}$ of \mathfrak{g}-valued 1 -forms defined on the open neighborhoods U, V, W, \ldots satisfies the cocycle condition (3.1). On the other hand, we put $\omega^{U}(Z):=A_{U}(Y)+X$ for $Z=\left(\sigma_{U_{\star}}\right)_{x}(Y)+\left(X^{\star}\right)_{\sigma_{U}(x)}(Z \in$ $\left.T_{\sigma_{U}(x)}(P), Y \in T_{x}(M), X \in \mathfrak{g}\right)$, and if $Z \in T_{v}(P)\left(g \in G, \sigma_{U}(x) g=v \in\right.$ $P)$, then we put $\omega^{U}(Z):=\operatorname{Ad}\left(g^{-1}\right) \omega^{U}\left(R_{g^{-1} \star} Z\right)$. Here $\omega^{U}, \omega^{V}, \omega^{W}, \ldots$ coincide on the overlapping neighborhoods of P, and the family $\omega:=$ $\left\{\omega^{U}, \omega^{V}, \omega^{W}, \ldots\right\}$ satisfy the conditions as in (2.1).

The curvature form $F(A)([1,2])$ of a connection $A\left(\in \mathfrak{A}_{P}\right)$ in the principal fibre bundle $P(M, g)$ is given by

$$
\begin{equation*}
F(A)=d A+A \wedge A . \tag{3.2}
\end{equation*}
$$

We fix an $\operatorname{Ad}(G)$-invariant inner product $<,>$ on \mathfrak{g}. A Yang-Mills connection is a critical point of the Yang-Mills functional

$$
\mathcal{Y} \mathcal{M}(A)=\frac{1}{2} \int_{M}\|F(A)\|^{2} v_{g} \quad\left(A \in \mathfrak{A}_{P}\right)
$$

which is defined on the space \mathfrak{A}_{P}, where v_{g} is the volume element of (M, g) and $\|F(A)\|^{2}=<F(A), F(A)>$. Let $\left\{X_{i}\right\}_{i=1}^{n}$ be a (locally defined) orthonormal frame on (M, g). Then a necessary and sufficient condition ([2, Theorem 4.1.3, p.107]) for a connection A in the principal fibre bundle P to become a Yang-Mills connection is the fact that

$$
\begin{align*}
&\left(\delta_{A} F(A)\right)\left(X_{i}\right)=-\sum_{j}\left\{\left(\nabla_{X_{j}} F(A)\right)\left(X_{j}, X_{i}\right)\right. \tag{3.3}\\
&\left.+\left[A\left(X_{j}\right), F(A)\left(X_{j}, X_{i}\right)\right]\right\}
\end{align*}
$$

vanishes, where δ_{A} is the formal adjoint operator of the covariant exterior differentiation d_{A}, and ∇ is the Levi-Civita connection on (M, g).
4. Yang-Mills connections in the affine orthonormal frame bundle $A O(M, g)$ over (M, g)

4.1. A generalized affine (Ehresmann) connection and an affine (Ehresmann) connection

Let (M, g) be an n-dimensional compact connected smooth manifold. A (Ehresmann) connection in the bundle $L(M)$ of all linear frames on M is called a linear connection of M. A generalized affine (Ehresmann) connection is a (Ehresmann) connection in the affine frame bundle $A(M)$
over M. Moreover, a generalized affine (Ehresmann) connection $\widetilde{\omega}$ in $A(M)$ is called an affine (Ehresmann) connection in $A(M)$, if the R^{n} valued 1-form $\varphi\left(\widetilde{\gamma}^{\star}(\widetilde{\omega})=\omega+\varphi\right)$ on $L(M)$ is the canonical 1-form θ $\left(\theta(X)=u^{-1} \pi_{\star}(X)\left(X \in T_{u}(L(M))\right)\right.$, where $\gamma: G L(n ; R) \hookrightarrow A(n ; R)$ and $\widetilde{\gamma}: L(M) \rightarrow A(M)$.

4.2. Generalized affine Yang-Mills connections in the affine orthonormal frame bundle $A O(M, g)$ over (M, g)

We get the following exact sequence:

$$
0 \hookrightarrow R^{n} \stackrel{\alpha}{\longrightarrow} A O(n ; R) \xrightarrow{\beta} O(n ; R)=A O(n ; R) / R^{n} \longrightarrow 1 .
$$

By the virtue of the principal fibre bundle homomorphism

$$
\widetilde{\beta}: A O(M, g) \rightarrow O(M, g)=A O(M, g) / R^{n}
$$

associated with the group homomorphism

$$
\beta: A O(n ; R) \rightarrow O(n ; R)=A O(n ; R) / R^{n},
$$

we obtain the fact that the set of all affine (Ehresmann) connections in $A O(M, g)(\subset A(M))$ and the set of all linear connections in $O(M, g)$ $(\subset L(M))$ are 1-1 correspondent (cf. [1, Theorem 3.3, p.129]).

Let $\widetilde{\omega}$ be a generalized affine (Ehresmann) connection in $A O(M, g)$, and $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ an (locally defined) orthonormal frame on (M, g). Let σ_{U} be the cross section of $O(M, g)(\subset A O(M, g))$ over $U(\subset M)$ which assigns to each $x \in U$ the linear frame $\left(\left(X_{1}\right)_{x},\left(X_{2}\right)_{x}, \ldots,\left(X_{n}\right)_{x}\right)$.

Let $\widetilde{\gamma}: O(M, g) \rightarrow A O(M, g)$ be the bundle homomorphism associated with the group homomorphism $\gamma: O(n ; R) \hookrightarrow A O(n ; R)$. Since $\widetilde{\gamma}^{\star} \widetilde{\omega}=\omega+\varphi$ on $O(M, g)$,

$$
\sigma_{U}{ }^{\star}\left(\widetilde{\gamma}^{\star} \widetilde{\omega}\right)=\sigma_{U}{ }^{\star} \omega+\sigma_{U}{ }^{\star} \varphi \equiv \widetilde{\omega}
$$

on $U(\subset M)$. Here and from now on, we put

$$
\begin{equation*}
\sigma_{U}{ }^{\star} \widetilde{\omega}=: \widetilde{A}_{U}, \sigma_{U}{ }^{\star} \omega=: A_{U}, \sigma_{U}^{\star} \varphi=: \varphi_{U}=: \varphi \tag{4.1}
\end{equation*}
$$

on $U(\subset M)$. Then in (4.1), the $\mathfrak{a o}(n ; R)$-valued 1 -form \widetilde{A} and the $\mathfrak{o}(n ; R)$-valued 1 -form A on M satisfy the cocycle condition (3.1). So, \widetilde{A} (resp. A) is a connection (form) in $A O(M, g)$ (resp. $O(M, g)$). Similarly, we call \widetilde{A} (resp. A) a generalized affine connection (form) in $A O(M, g)$ (resp. the linear connection (form) in $O(M, g)$ which is related to the connection $\widetilde{A})$. From the above facts, we get

$$
\begin{equation*}
\widetilde{A}_{U}=A_{U}+\varphi_{U} \quad(\tilde{A}=A+\varphi, \text { simply }) . \tag{4.2}
\end{equation*}
$$

From (3.2) and (4.2), we obtain ([1, Proposition 3.4, p.130])

$$
\begin{equation*}
F(\widetilde{A})=F(A)+d \varphi+A \wedge \varphi . \tag{4.3}
\end{equation*}
$$

Let (,) be the inner product on $\mathfrak{o}(n ; R)$ defined by $(X, Y):=$ $-\operatorname{trace}(X Y)\left(X, Y \in \mathfrak{o}(n ; R)\right.$, and let $\left\{e_{i}\right\}_{i}$ be the natural basis of R^{n}.

Now, we fix an inner product $<,>$ on $\mathfrak{a o}(n ; R)$ such that

$$
\left\{Z_{i}\right\}_{i=1}^{\left(n^{2}-n\right) / 2} \cup\left\{e_{j}\right\}_{j=1}^{n}
$$

is an orthonormal basis of $\mathfrak{a o}(n ; R)$ with respect to $<,>$, where $\left\{Z_{i}\right\}_{i=1}^{\left(n^{2}-n\right) / 2}$ is an orthonormal basis on $(\mathfrak{o}(n ; R),()$,$) . Then, the inner product \langle$, on $\mathfrak{a o}(n ; R)$ is $\operatorname{Ad}(O(n ; R))$-invariant. So, $<,>$ is $\operatorname{Ad}(\phi(x))$-invariant, where $x \in M$ and ϕ are transition functions appeared by local triviality of the principal fibre bundle $O(M, g)$.

For convenience' sake, for a (locally defined) orthonormal frame $\left\{X_{i}\right\}_{i=1}^{n}$ on (M, g), we put

$$
\begin{align*}
& \left(\delta_{\widetilde{A}} F(\widetilde{A})\right)\left(X_{i}\right)=:\left(\delta_{\widetilde{A}} \widetilde{F}\right)_{i}, \quad\left(\delta_{A} F(A)\right)\left(X_{i}\right)=:\left(\delta_{A} F\right)_{i}, \\
& \left(\nabla_{X_{k}} d \varphi\right)\left(X_{i}, X_{j}\right)=: \nabla_{k} d \varphi_{i j}, \\
& \left(\nabla_{X_{k}} A \wedge \varphi\right)\left(X_{i}, X_{j}\right)=: \nabla_{k}(A \wedge \varphi)_{i j}, \tag{4.4}\\
& (F(A))\left(X_{k}, X_{i}\right)=: F_{k i}, \quad \varphi\left(X_{j}\right)=: \varphi_{j}, \quad A\left(X_{k}\right)=: A_{k}, \\
& (A \wedge \varphi)\left(X_{i}, X_{j}\right)=:(A \wedge \varphi)_{i j},(d \varphi)\left(X_{i}, X j\right)=: d \varphi_{i j} .
\end{align*}
$$

From (3.2), (3.3), (4.3), (4.4), and the properties of the inner product $<,>$ on $\mathfrak{a o}(n ; R)$, we obtain

$$
\begin{align*}
\left(\delta_{\widetilde{A}} \widetilde{F}\right)_{i}=\left(\delta_{A} F\right)_{i}-\sum_{k}\{ & \nabla_{k} d \varphi_{k i}+\nabla_{k}(A \wedge \varphi)_{k i} \tag{4.5}\\
& \left.\quad-F_{k i} \varphi_{k}+\left[A_{k}, d \varphi_{k i}\right]+\left[A_{k},(A \wedge \varphi)_{k i}\right]\right\}
\end{align*}
$$

By the help of (4.5), we get
Theorem 4.1. Let \widetilde{A} be a generalized affine connection (form) in $A O(M, g)$, and A a linear connection in $O(M, g)$ such that $\widetilde{A}=A+\varphi$. Assume the linear connection A in $O(M, g)$ is a Yang-Mills connection. Then, a necessary and sufficient condition for the connection (form) \widetilde{A} to become a Yang-Mills connection is

$$
\begin{aligned}
& \sum_{k}\left\{\nabla_{k} d \varphi_{k i}+\nabla_{k}(A \wedge \varphi)_{k i}-F_{k i} \varphi_{k}\right. \\
& \quad\left.\quad\left[A_{k}, d \varphi_{k i}\right]+\left[A_{k},(A \wedge \varphi)_{k i}\right]\right\}=0 .
\end{aligned}
$$

4.3. Affine Yang-Mills connections in the affine orthonormal frame bundle $A O(M, g)$

Assume \widetilde{A} is an affine connection in $A O(M, g)$. Then we get

$$
\widetilde{A}_{U}=A_{U}+\varphi_{U}=A_{U}+\sigma_{U}^{\star} \theta=: A_{U}+\theta_{U} \quad(\widetilde{A}=A+\theta, \text { briefly })
$$

where θ is the canonical 1-form on $O(M, g)$, i.e.

$$
\theta(Z):=u^{-1} \pi_{\star}(Z) \quad\left(Z \in T_{u}(O(M, g))\right.
$$

Since $\theta_{i}:=\theta\left(X_{i}\right):=\left(\sigma_{U}^{\star}\right) \theta\left(X_{i}\right)=e_{i}$, we have

$$
\begin{equation*}
X_{k}\left(\varphi_{i}\right)=X_{k}\left(\theta_{i}\right)=0 \tag{4.6}
\end{equation*}
$$

Let $\left\{Y^{i}\right\}_{i}$ be the (locally defined) dual frame of the (locally defined) orthonormal frame $\left\{X_{i}\right\}_{i}$ on (M, g). Then we put

$$
\begin{equation*}
Y^{t}\left(\nabla_{X_{i}} X_{k}\right)=: \Gamma_{i k}^{t}, \quad\left[X_{i}, X_{j}\right]=: \sum_{k} C_{i j}^{k} X_{k} \tag{4.7}
\end{equation*}
$$

Since ∇ is the Levi-Civita connection on (M, g), we have from (4.7)

$$
\begin{equation*}
\Gamma_{i j}^{k}-\Gamma_{j i}^{k}=C_{i j}^{k}, \quad \Gamma_{i j}^{k}=-\Gamma_{j i}^{k} . \tag{4.8}
\end{equation*}
$$

Then, by the help of (3.2), (4.4), (4.6) and (4.7), we get

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
\nabla_{k} d \theta_{k i}=-\frac{1}{2}\{
\end{array} X_{k}\left(\sum_{l} C_{k i}^{l}\right) e_{l}-\sum_{l, t}\left(\Gamma_{k k}^{t} C_{t i}^{l}+\Gamma_{k i}^{t} C_{k t}^{l}\right) e_{l}\right\}, \\
\begin{array}{rl}
\nabla_{k}(A \wedge \theta)_{k i}= & \frac{1}{2}[
\end{array} X_{k}\left(A_{k} e_{i}-A_{i} e_{k}\right) \\
\\
\left.\quad+\sum_{l}\left\{\Gamma_{k i}^{l}\left(A_{l} e_{k}-A_{k} e_{l}\right)+\Gamma_{k k}^{l}\left(A_{i} e_{l}-A_{l} e_{i}\right)\right\}\right],
\end{array}\right] \begin{aligned}
& F_{k i} \theta_{k}=\frac{1}{2}\left\{X_{k}\left(A_{i}\right)-X_{i}\left(A_{k}\right)+A_{k} A_{i}-A_{i} A_{k}-\sum_{l} C_{k i}^{l} A_{l}\right\} e_{k},
\end{aligned} \begin{aligned}
& {\left[A_{k}, d \theta_{k i}\right]=-\frac{1}{2} \sum_{l} A_{k} C_{k i}^{l} e_{l},} \tag{4.9}\\
& {\left[A_{k},(A \wedge \theta)_{k i}\right]=\frac{1}{2} A_{k}\left(A_{k} e_{i}-A_{i} e_{k}\right) .}
\end{aligned}
$$

From (4.5) and (4.9), we get

$$
\begin{align*}
\left(\delta_{\widetilde{A}} \widetilde{F}\right)_{i}=\left(\delta_{A} F\right)_{i}-\frac{1}{2} \sum_{k}\{ & X_{k}\left(A_{k} e_{i}-A_{i} e_{k}-\sum_{l} C_{k i}^{l} e_{l}\right) \\
& +A_{k}\left(A_{k} e_{i}-2 A_{i} e_{k}\right)+\sum_{l, t} \Gamma_{k i}^{t} C_{k t}^{l} e_{l} \\
& +\sum_{t} \Gamma_{k k}^{t}\left(A_{i} e_{t}-A_{t} e_{i}+\sum_{l} C_{t i}^{l} e_{l}\right) \tag{4.10}\\
& +\left(X_{i}\left(A_{k}\right)-X_{k}\left(A_{i}\right)+A_{i} A_{k}\right) e_{k} \\
& \left.+2 \sum_{t}\left(\Gamma_{t i}^{k}+\Gamma_{i k}^{t}+\Gamma_{k t}{ }^{i}\right) A_{k} e_{t}\right\} .
\end{align*}
$$

By virtue of (4.10), we obtain
Theorem 4.2. Let \widetilde{A} be an affine connection (form) in $A O(M, g)$, and A a linear connection in $O(M, g)$ such that $\widetilde{A}=A+\theta$. Assume the linear connection A in $O(M, g)$ is a Yang-Mills connection. Then, a necessary and sufficient condition for the connection (form) \widetilde{A} to become a Yang-Mills connection is

$$
\begin{aligned}
\sum_{k}\{ & X_{k}\left(A_{k} e_{i}-A_{i} e_{k}-\sum_{l} C_{k i}^{l} e_{l}\right)+A_{k}\left(A_{k} e_{i}-2 A_{i} e_{k}\right) \\
& +\sum_{l, t} \Gamma_{k i}^{t} C_{k t}^{l} e_{l}+\sum_{t} \Gamma_{k k}^{t}\left(A_{i} e_{t}-A_{t} e_{i}+\sum_{l} C_{t i}^{l} e_{l}\right) \\
& +\left(X_{i}\left(A_{k}\right)-X_{k}\left(A_{i}\right)+A_{i} A_{k}\right) e_{k} \\
& \left.+2 \sum_{t}\left(\Gamma_{t i}^{k}+\Gamma_{i k}^{t}+\Gamma_{k t}{ }^{i}\right) A_{k} e_{t}\right\}=0 .
\end{aligned}
$$

4.4. The connection form in $O(M, g)$ defined by the LeviCivita connection for the metric g of (M, g)
Let $M=G$ be an n-dimensional closed (connected and compact) semisimple Lie group. Let g be the canonical bi-invariant Riemannian metric induced by the Killing form of the Lie algebra \mathfrak{g} of the group M. Let $\left\{X_{i}\right\}_{i}$ be an orthonormal basis on $\left(\mathfrak{g},():,=g_{e}\right)$, where e is the identity element of the group M. Let ∇ be the Levi-Civita connection on ($M=G, g$), and $\left\{Y^{k}\right\}_{k}$ be the dual frame of the orthonormal frame $\left\{X_{i}\right\}_{i}$ on (M, g). Now, we put $Y^{k}\left(\nabla_{X_{j}} X_{i}\right)=: \Gamma_{j i}{ }^{k}, \sum_{k} \Gamma_{k j}{ }^{i} Y^{k}=: a_{j}^{i}$, and $\left(a_{j}^{i}\right)_{i, j}=: A$. Then, A is a linear connection (form) in $O(M, g)$. Let \widetilde{A} be an affine connection in $A O(M, g)$ such that $\widetilde{A}=A+\theta$ on $O(M, g)$, where θ is the canonical form on $O(M, g)$.

From these facts, we get

$$
\begin{equation*}
A_{k}=A\left(X_{k}\right)=\left(\Gamma_{k j}{ }^{i}\right)_{i, j} \tag{4.11}
\end{equation*}
$$

which belongs to $\mathfrak{o}(n ; R)$. We fix an inner product (,) on $\mathfrak{o}(n ; R)$ such that $(X, Y):=g_{e}(X, Y)(X, Y \in \mathfrak{o}(n ; R))$. Then the inner product (,) is $\operatorname{Ad}(O(n ; R))$-invariant. So, we obtain from (4.8) and (4.11)

$$
\begin{equation*}
\Gamma_{k j}^{i}=-\Gamma_{j k}^{i}=-\Gamma_{k i}^{j}, 2 \Gamma_{k j}^{i}=C_{k j}^{i}, \Gamma_{k j}^{i}=\Gamma_{j i}^{k}=\Gamma_{i k}^{j} . \tag{4.12}
\end{equation*}
$$

Since $C_{i j}{ }^{k}$ are constants, we have

$$
\begin{equation*}
X_{k}\left(C_{i j}^{k}\right)=2 X_{k}\left(\Gamma_{i j}^{k}\right)=0 \tag{4.13}
\end{equation*}
$$

From (3.2), (4.11) and (4.12), we get

$$
\begin{align*}
(F(A))\left(X_{k}, X_{i}\right) & =: F_{k i} \\
& =\frac{1}{2}\left(\sum_{l}\left(\Gamma_{k l}^{s} \Gamma_{i j}^{l}-\Gamma_{i l}^{s} \Gamma_{k j}^{l}-2 \Gamma_{k i}^{l} \Gamma_{l j}^{s}\right)\right)_{s, j} \tag{4.14}
\end{align*}
$$

which belongs to $\mathfrak{o}(n ; R)$. From (4.4), (4.11), (4.12) and (4.14), we get

$$
\begin{equation*}
\sum_{k}\left[A_{k}, F_{k i}\right]_{j}^{s}=\sum_{k, l, t}\left(3 \Gamma_{k j}^{t} \Gamma_{k i}^{l} \Gamma_{l t}^{s}+\frac{1}{2} \Gamma_{k t}^{s} \Gamma_{k l}^{t} \Gamma_{i j}^{l}+\frac{1}{2} \Gamma_{k j}^{t} \Gamma_{i l}^{s} \Gamma_{k t}^{l}\right) \tag{4.15}
\end{equation*}
$$

which is the (s, j) th component of $\sum_{k}\left[A_{k}, F_{k i}\right](\in \mathfrak{o}(n ; R))$. From (4.12) and (4.14), we obtain

$$
\begin{equation*}
\left(\sum_{k} \nabla_{k} F_{k i}\right)_{j}^{s}=\sum_{k, l, t}\left(\Gamma_{k i}{ }^{t} \Gamma_{t l}^{s} \Gamma_{k j}{ }^{l}+\Gamma_{k i}{ }^{t} \Gamma_{k t}{ }^{l} \Gamma_{l j}{ }^{s}\right) \tag{4.16}
\end{equation*}
$$

which is the (s, j) th component of $\sum_{k} \nabla_{k} F_{k i}(\in \mathfrak{o}(n ; R))$. We get from (3.3), (4.4), (4.12), (4.15) and (4.16),

$$
\begin{align*}
\left(\delta_{A} F\right)_{i}=-\sum_{k, l, t} & \left(4 \Gamma_{k j}{ }^{t} \Gamma_{k i}^{l} \Gamma_{l t}^{s}+\Gamma_{k i}^{t} \Gamma_{k t}^{l} \Gamma_{l j}^{s}\right. \tag{4.17}\\
& \left.+\frac{1}{2} \Gamma_{k s}^{t} \Gamma_{k t}^{l} \Gamma_{l i}^{j}+\frac{1}{2} \Gamma_{k j}^{t} \Gamma_{k t}^{l} \Gamma_{l s}^{i}\right) .
\end{align*}
$$

Since $\left[\left[X_{j}, X_{s}\right], X_{k}\right]+\left[\left[X_{s}, X_{k}\right], X_{j}\right]+\left[\left[X_{k}, X_{j}\right], X_{s}\right]=0$, we have

$$
\begin{equation*}
\sum_{l} C_{j s}^{l} C_{l k}^{t}=\sum_{l}\left(C_{k s}^{l} C_{l j}^{t}+C_{j k}^{l} C_{l s}^{t}\right) \tag{4.18}
\end{equation*}
$$

From (4.12) and (4.18), we get

$$
\begin{equation*}
\sum_{k, l, t} \Gamma_{k i}^{t} \Gamma_{k t}^{l} \Gamma_{l j}^{s}=2 \sum_{k, l, t} \Gamma_{j k}{ }^{t} \Gamma_{k i}^{l} \Gamma_{l k}{ }^{s} . \tag{4.19}
\end{equation*}
$$

Similarly, we have from (4.12) and (4.19)

$$
\begin{align*}
& \frac{1}{2} \sum_{k, l, t} \Gamma_{k s}^{t} \Gamma_{k t}^{l} \Gamma_{l i}^{j}=\sum_{k, l, t} \Gamma_{j k}{ }^{t} \Gamma_{k i}^{l} \Gamma_{l t}^{s}, \\
& \frac{1}{2} \sum_{k, l, t} \Gamma_{k j}^{t} \Gamma_{k t}^{l} \Gamma_{l s}^{i}=\sum_{k, l, t} \Gamma_{j k}{ }^{t} \Gamma_{k i}^{l} \Gamma_{l t}^{s} . \tag{4.20}
\end{align*}
$$

By virtue of (4.12), (4.17), (4.19) and (4.20), we get

$$
\begin{equation*}
\left(\delta_{A} F\right)_{i}=0 \tag{4.21}
\end{equation*}
$$

Thus we obtain the following
Lemma 4.3. Let M be a closed semisimple Lie group, and g the canonical bi-invariant Riemannian metric which is induced from the Killing form of the Lie algebra \mathfrak{g} of the Lie group M. Let A be the connection form in $O(M, g)$ which is defined by the Levi-Civita connection on (M, g). Then, A becomes a Yang-Mills connection.

Moreover from (4.10), (4.11), (4.13) and (4.21), we obtain

$$
\begin{align*}
\left(\delta_{\widetilde{A}} \widetilde{F}\right)_{i}=-\frac{1}{2} \sum_{k}\{ & A_{k}\left(A_{k} e_{i}-2 A_{i} e_{k}\right)+\sum_{l, t} \Gamma_{k i}^{t} C_{k t}^{l} e_{l} \\
& +\sum_{t} \Gamma_{k k}^{t}\left(A_{i} e_{t}-A_{t} e_{i}+\sum_{l} C_{t i}^{l} e_{l}\right) \tag{4.22}\\
& \left.+A_{i} A_{k} e_{k}+2 \sum_{t}\left(\Gamma_{t i}^{k}+\Gamma_{i k}^{t}+\Gamma_{k t}^{i}\right) A_{k} e_{t}\right\}
\end{align*}
$$

We get from (4.11), (4.12) and (4.22), we get

$$
\begin{align*}
\left(\delta_{\widetilde{A}} \widetilde{F}\right)_{i}=-\frac{1}{2} \sum_{k}\left\{\sum_{t}\right. & A_{k}\left(\Gamma_{k i}^{t} e_{t}-2 \Gamma_{i k}^{t} e_{t}\right) \tag{4.23}\\
& \left.+2 \sum_{l, t}\left(\Gamma_{k i}^{t}+3 \Gamma_{t i}^{k}\right) \Gamma_{k t}^{l} e_{l}\right\}
\end{align*}
$$

By the help of (4.11), (4.12) and (4.23), we have

$$
\begin{equation*}
\left(\delta_{\widetilde{A}} \widetilde{F}\right)_{i}=-\frac{1}{2} \sum_{k, l, t} \Gamma_{k t}{ }^{i} \Gamma_{k t}^{l} e_{l}=-\frac{1}{8} \sum_{k, l, t} C_{k t}{ }^{i} C_{k t}^{l} e_{l} . \tag{4.24}
\end{equation*}
$$

So, from (4.24) we get the following:
if the affine connection $\widetilde{A}(\widetilde{A}=A+\theta)$ in $A O(M, g)$ becomes a YangMills connection, then the Lie algebra \mathfrak{g} of $M(=G)$ is abelian.
This contradicts the fact that \mathfrak{g} is semisimple.

Combining this result with Lemma 4.3, we obtain
Theorem 4.4. Let M be a closed semisimple Lie group, and g the canonical bi-invariant Riemannian metric which is induced from the Killing form of the Lie algebra \mathfrak{g} of the group M. Let A be the connection form in $O(M, g)$ which is defined by the Levi-Civita connection on (M, g), and \widetilde{A} the affine connection in $A O(M, g)$ such that $\widetilde{A}=A+\theta$. Then, A becomes a Yang-Mills connection in $O(M, g)$, but \widetilde{A} does not become a Yang-Mills connection in $A O(M, g)$.

References

[1] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, John Wiley and Sons, New York, 1963.
[2] I. Mogi and M. Itoh, Differential Geometry and Gauge Theory (in Japanese), Kyoritsu Publ., 1986.

Hyun Woong Kim
Department of Mathematics Education, Silla University, Pusan 617-736, Korea
E-mail: 0127woong@silla.ac.kr
Joon-Sik Park
Department of Mathematics,
Pusan University of Foreign Studies, Busan 609-815, Korea
E-mail: iohpark@pufs.ac.kr
Yong-Soo Pyo
Department of Applied Mathematics, Pukyong National University, Pusan 608-737, Korea
E-mail: yspyo@pknu.ac.kr

[^0]: Received November 25, 2014. Accepted December 31, 2014.
 2010 Mathematics Subject Classification: 53C05, 53B05, 55R10, 55R65.
 Key words and phrases: Yang-Mills connection, affine orthonormal frame bundle, (generalized) affine connection, linear connection, semisimple Lie group.
 *Corresponding Author.

