참고문헌
- Anderson, D.M., Maraskovsky, E., Billingsley, W.L., Dougall, W.C., Tometsko, M.E., Roux, E.R., Teepe, M.C., DuBose, R.F., Cosman, D., and Galibert, L. (1997). A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175-179 https://doi.org/10.1038/36593
- Blair, H.C. (1998). How the osteoclast degrades bone. Bioessays 20, 837-848 https://doi.org/10.1002/(SICI)1521-1878(199810)20:10<837::AID-BIES9>3.0.CO;2-D
- Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
- Campa's, C., Cosialls, A.M., Barragn, M., Iglesias-Serret, D., Santidrian, A.F., Coll-Mulet, L., de Frias, M., Domingo, A., Pons, G., and Gil, J. (2006). Bcl-2 inhibitors induce apoptosis in chronic lymphocytic leukemia cells. Exp. Hematol. 34, 1663-1669 https://doi.org/10.1016/j.exphem.2006.07.008
- Choi, J., Choi, S.Y., Lee, S.Y., Lee, J.Y., Kim, H.S., Lee, S.Y., and Lee, N.K. (2013). Caffeine enhances osteoclast differentiation and maturation through p38 MAP kinase/Mitf and DCSTAMP/CtsK and TRAP pathway. Cell. Signal. 25, 1222-1227 https://doi.org/10.1016/j.cellsig.2013.02.015
- David, J.P., Sabapathy, K., Hoffmann, O., Idarraga, M.H., and Wagner, E.F. (2002). JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and-independent mechanisms. J. Cell Sci. 115, 4317-4325. https://doi.org/10.1242/jcs.00082
- de Vries, T.J., Schoenmaker, T., Beertsen, W., van der Neut, R., and Everts, V. (2005). Effect of CD44 deficiency on in vitro and in vivo osteoclast formation. J. Cell. Biochem. 94, 954-966. https://doi.org/10.1002/jcb.20326
- Harada, S., and Rodan, G.A. (2003). Control of osteoblast function and regulation of bone mass. Nature 423, 349-355. https://doi.org/10.1038/nature01660
- Hartgers, F.C., Vissers, J.L., Looman, M.W., van Zoelen, C., Huffine, C., Figdor, C.G., and Adema, G.J. (2000). DC-STAMP, a novel multimembrane-spanning molecule preferentially expressed by dendritic cells. Eur. J. Immunol. 30, 3585-3590. https://doi.org/10.1002/1521-4141(200012)30:12<3585::AID-IMMU3585>3.0.CO;2-Y
- Hockenbery, D.M., Oltvai, Z.N., Yin, X.M., Milliman, C.L., and Korsmeyer, S.J. (1993). Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75, 241-251. https://doi.org/10.1016/0092-8674(93)80066-N
- Hwang, J.J., Kuruvilla, J., Mendelson, D., Pishvaian, M.J., Deeken, J.F., Siu, L.L., Berger, M.S., Viallet, J., and Marshall, J.L. (2010). Phase I dose finding studies of obatoclax (GX15-070), a small molecule pan-BCL-2 family antagonist, in patients with advanced solid tumors or lymphoma. Clin. Cancer Res. 16, 4038-4045. https://doi.org/10.1158/1078-0432.CCR-10-0822
- Ishii, M., Iwai, K., Koike, M., Ohshima, S., Kudo-Tanaka, E., Ishii, T., Mima, T., Katada, Y., Miyatake, K., Uchiyama, Y., and Saeki, Y. (2006). RANKL-induced expression of tetraspanin CD9 in lipid raft membrane microdomain is essential for cell fusion during osteoclastogenesis. J. Bone Miner. Res. 21, 965-976. https://doi.org/10.1359/jbmr.060308
- Kim, H.S., and Lee, N.K. (2014). Gene expression profiling in osteoclast precursors by insulin using microarray analysis. Mol. Cells 30, 827-832.
- Kim, K., Lee, S.H., Kim, J., Choi, Y., and Kim, N. (2008). NFATc1 induces osteoclast fusion via upregulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DCSTAMP). Mol. Endocrinol. 22, 176-185. https://doi.org/10.1210/me.2007-0237
- Kim, P.S., Jochems, C., Grenga, I., Donahue, R.N., Tsang, K.Y., Gulley, J.L., Schlom, J., and Farsaci, B. (2014). Pan-Bcl-2 Inhibitor, GX15-070 (Obatoclax), decreases human T regulatory lymphocytes while preserving effector T lymphocytes: a rationale for its use in combination immunotherapy, J. Immunol. 192, 2622-2633. https://doi.org/10.4049/jimmunol.1301369
- Konopleva, M., Watt, J., Contractor, R., Tsao, T., Harris, D., Estrov, Z., Bornmann, W., Kantarjian, H., Viallet, J., Samudio, I., et al. (2008). Mechanisms of antileukemic activity of the novel Bcl-2 homology domain-3 mimetic GX15-070 (obatoclax). Cancer Res. 68, 3413-3420. https://doi.org/10.1158/0008-5472.CAN-07-1919
- Kukita, T., Wada, N., Kukita, A., Kakimoto, T., Sandra, F., Toh, K., Nagata, K., Iijima, T., Horiuchi, M., Matsusaki, H., et al. (2004). RANKL-induced DC-STAMP is essential for osteoclastogenesis. J. Exp. Med. 200, 941-946. https://doi.org/10.1084/jem.20040518
- Lee, J.Y., and Lee, N.K. (2014). Up-regulation of cyclinD1 and Bcl2A1 by insulin is involved in osteoclast proliferation. Life Sci. 114, 57-61. https://doi.org/10.1016/j.lfs.2014.07.006
- Lee, S.H., Rho, J., Jeong, D., Sul, J.Y., Kim, T., Kim, N., Kang, J.S., Miyamoto, T., Suda, T., Lee, S.K., et al. (2006). v-ATPase V0 subunit d2-deficient mice exhibit impaired steoclast fusion and increased bone formation. Nat. Med. 12, 1403-1409 https://doi.org/10.1038/nm1514
- Li, X., Udagawa, N., Itoh, K., Suda, K., Murase, Y., and Nishihara, T. (2002). p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology 143, 3105-3113. https://doi.org/10.1210/endo.143.8.8954
- Mansky, K.C., Sankar, U., Han, J., and Ostrowski, M.C. (2002). Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-B ligand signaling. J. Biol. Chem. 277, 11077-11083. https://doi.org/10.1074/jbc.M111696200
- Nishi, T., Kawasaki-Nishi, S., and Forgac, M. (2003). Expression and function of the mouse V-ATPase d subunit isoforms. J. Biol. Chem. 278, 46396-46402. https://doi.org/10.1074/jbc.M303924200
- Paik, P.K., Rudin, C.M., Brown, A., Rizvi, N.A., Takebe, N., Travis, W., James, L., Ginsberg, M.S., Juergens, R., Markus, S., et al. (2010). A phase I study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in solid tumor malignancies. Cancer Chemother. Pharmacol. 66, 1079-1085. https://doi.org/10.1007/s00280-010-1265-5
- Rho, J., Altmann, C.R., Socci, N.D., Merkov, L., Kim, N., So, H., Lee, O., Takami, M., Brivanlou, A.H., and Choi, Y. (2002). Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis. DNA Cell. Biol. 21, 541-549 https://doi.org/10.1089/104454902320308915
- Rodan, G.A., and Martin, T.J. (2000) Therapeutic approaches to bone diseases. Science 289, 1508-1514. https://doi.org/10.1126/science.289.5484.1508
- Staege, H., Brauchlin, A., Schoedon, G., and Schaffner, A. (2001). Two novel genes FIND and LIND differentially expressed in deactivated and Listeria-infected human macrophages. Immunogenetics 53, 105-113. https://doi.org/10.1007/s002510100306
- Teitelbaum, S.L. (2000). Bone resorption by osteoclasts. Science 289, 1504-1508 https://doi.org/10.1126/science.289.5484.1504
- Trudel, S., Li, Z.H., Rauw, J., Tiedemann, R.E., Wen, X.Y., and Stewart, A.K. (2007). Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015-070) in multiple myeloma. Blood 109, 5430-5438 https://doi.org/10.1182/blood-2006-10-047951
- Vignery, A. (2000). Osteoclasts and giant cells: macrophagemacrophage fusion mechanism. Int. J. Exp. Pathol. 81, 291-304. https://doi.org/10.1046/j.1365-2613.2000.00164.x
- Wei, S., Wang, M.W., Teitelbaum, S.L., and Ross, F.P. (2002). Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-kappa B and mitogen-activated protein kinase signaling. J. Biol. Chem. 277, 6622-6630. https://doi.org/10.1074/jbc.M104957200
- Wong, B.R., Josien, R., Lee, S.Y., Sauter, B., Li, H.L., Steinman, R.M., and Choi, Y. (1997). TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cellspecific survival factor. J. Exp. Med. 186, 2075-2080. https://doi.org/10.1084/jem.186.12.2075
- Wu, H., Xu, G., and Li, Y.P. (2009). Atp6v0d2 is an essential component of the osteoclast-specific proton pump that mediates extracellular acidification in bone resorption. J. Bone Miner. Res. 24, 871-885. https://doi.org/10.1359/jbmr.081239
- Xing, L., Xiu, Y., and Boyce, B.F. (2012). Osteoclast fusion and regulation by RANKL-dependent and independent factors. World J. Orthop. 3, 212-222. https://doi.org/10.5312/wjo.v3.i12.212
- Yamashita, J., Datta, N.S., Chun, Y.H., Yang, D.Y., Carey, A.A., Kreider, J.M., Goldstein, S.A., and McCauley, L.K. (2008). Role of Bcl2 in osteoclastogenesis and PTH anabolic actions in bone. J. Bone Miner. Res. 23, 621-632.
- Yang, J., Zhang, X., Wang, W., and Liu, J. (2010). Insulin stimulates osteoblast proliferation and differentiation through ERK and PI3K in MG-63 cells. Cell Biochem. Funct. 28, 334-341. https://doi.org/10.1002/cbf.1668
- Zhang, C., Dou, C.E., Xu, J., and Dong, S. (2014). DC-STAMP, the key fusion-mediating molecule in osteoclastogenesis. J. Cell. Physiol. 229, 1330-1335. https://doi.org/10.1002/jcp.24553
피인용 문헌
- Insulin enhances RANKL-induced osteoclastogenesis via ERK1/2 activation and induction of NFATc1 and Atp6v0d2 vol.27, pp.12, 2015, https://doi.org/10.1016/j.cellsig.2015.09.002
- Design, synthesis and biological evaluation of 3-aryl-rhodanine benzoic acids as anti-apoptotic protein Bcl-2 inhibitors vol.25, pp.22, 2015, https://doi.org/10.1016/j.bmcl.2015.09.051
- The triptolide-induced apoptosis of osteoclast precursor by degradation of cIAP2 and treatment of rheumatoid arthritis of TNF-transgenic mice pp.0951418X, 2018, https://doi.org/10.1002/ptr.6224
- Up-Regulation of RANK Expression via ERK1/2 by Insulin Contributes to the Enhancement of Osteoclast Differentiation vol.40, pp.5, 2015, https://doi.org/10.14348/molcells.2017.0025
- Psoralen accelerates bone fracture healing by activating both osteoclasts and osteoblasts vol.33, pp.4, 2015, https://doi.org/10.1096/fj.201801797r
- Endogenous Collagenases Regulate Osteoclast Fusion vol.10, pp.5, 2015, https://doi.org/10.3390/biom10050705
- Osteoclast Multinucleation: Review of Current Literature vol.21, pp.16, 2015, https://doi.org/10.3390/ijms21165685
- Long-Lasting Activity of ERK Kinase Depends on NFATc1 Induction and Is Involved in Cell Migration-Fusion in Murine Macrophages RAW264.7 vol.21, pp.23, 2020, https://doi.org/10.3390/ijms21238965
- Inhibition of MEK/ERK upregulates GSH production and increases RANKL-induced osteoclast differentiation in RAW 264.7 cells vol.54, pp.11, 2015, https://doi.org/10.1080/10715762.2020.1742896