References
- Atamna, H., Paler-Martinez, A., and Ames, B.N. (2000). N-t-butyl hydroxylamine, a hydrolysis product of alpha-phenyl-N-t-butyl nitrone, is more potent in delaying senescence in human lung fibroblasts. J. Biol. Chem. 275, 6741-6748 https://doi.org/10.1074/jbc.275.10.6741
- Burkart, V., Blaeser, K., and Kolb, H. (1999). Potent beta-cell protection in vitro by an isoquinolinone-derived PARP inhibitor. Horm. Metab. Res. 12, 641-644.
- Cho, S., Park, J., and Hwang, E.S. (2011). Kinetics of the cell biological changes occurring in the progression of DNA damageinduced senescence. Mol. Cells 6, 539-546.
- Dai, D.F., Chiao, Y.A., Marcinek, D.J., Szeto, H.H., and Rabinovitch, P.S. (2014). Mitochondrial oxidative stress in aging and healthspan. Longev. Healthspan 3, 6.
- Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363-9367 https://doi.org/10.1073/pnas.92.20.9363
- Finkel, T. (2000). Redox-dependent signal transduction. FEBS Lett. 476, 52-54. https://doi.org/10.1016/S0014-5793(00)01669-0
- Genova, M.L., Pich, M.M., Bernacchia, A., Bianchi, C., Biondi, A., Bovina, C., Falasca, A.I., Formiggini, G., Castelli, G.P., and Lenaz, G. (2004). The mitochondrial production of reactive oxygen species in relation to aging and pathology. Ann. N Y Acad. Sci. 1011, 86-100 https://doi.org/10.1196/annals.1293.010
- Hwang, E.S., Yoon, G., and Kang, H.T. (2009). A comparative analysis of the cell biology of senescence and aging. Cell. Mol. Life Sci. 66, 2503-2524. https://doi.org/10.1007/s00018-009-0034-2
- Jackson, T.M., Rawling, J.M., Roebuck, B.D., and Kirkland, J.B. (1995). Large supplements of nicotinic acid and nicotinamide increase tissue NAD+ and poly(ADP-ribose) levels but do not affect diethylnitrosamine-induced altered hepatic foci in Fischer-344 rats. J. Nutr. 125, 1455-14561.
- Jang, S.Y., Kang, H.T., and Hwang. E.S. (2012). Nicotinamideinduced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J. Biol. Chem. 287, 19304-19314. https://doi.org/10.1074/jbc.M112.363747
- Kamat, J.P., and Devasagayam, T.P. (1999). Nicotinamide (vitamin B3) as an effective antioxidant against oxidative damage in rat brain mitochondria. Redox. Rep. 4, 179-184. https://doi.org/10.1179/135100099101534882
- Kang, H.T., Lee, H.I., and Hwang, E.S. (2006). NAM extends replicative lifespan of human cells. Aging Cell. 5, 423-436. https://doi.org/10.1111/j.1474-9726.2006.00234.x
- Lee, B.Y., Han, J.A, Im, J.S., Morrone, A., Johung, K., Goodwin, E.C., Kleijer, W.J., DiMaio, D., and Hwang, E.S. (2006). Senescenceassociated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 5, 187-195. https://doi.org/10.1111/j.1474-9726.2006.00199.x
- Lee, H.I., Jang, S.Y., Kang, H.T., and Hwang, E.S. (2008). p53-, SIRT1-, and PARP-1-independent downregulation of p21WAF1 expression in nicotinamide-treated cells. Biochem. Biophys. Res. Commun. 368, 298-304. https://doi.org/10.1016/j.bbrc.2008.01.082
- Liaudet, L., Soriano, F.G., Szabo, E., Virag, L., Mabley, J.G., Salzman, A.L., and Szabo, C. (2000). Protection against hemorrhagic shock in mice genetically deficient in poly(ADP-ribose)polymerase. Proc. Natl. Acad. Sci. USA 97, 10203-10208 https://doi.org/10.1073/pnas.170226797
- Ling, Y.H., el-Naggar, A.K., Priebe, W., and Perez-Soler, R. (1996). Cell cycle-dependent cytotoxicity, G2/M phase arrest, and disruption of p34cdc2/cyclin B1 activity induced by doxorubicin in synchronized P388 cells. Mol. Pharmacol. 49, 832-841.
- Liu, G., Foster J., Manlapaz-Ramos, P., and Olivera B.M., (1982). Nucleoside salvage pathway for NAD biosynthesis in Salmo nella typhimurium. J. Bacteriol. 152, 1111-1116.
- Loschen, G., and Azzi, A. (1975). On the formation of hydrogen peroxide and oxygen radicals in heart mitochondria. Recent Adv. Stud. Cardiac. Struct. Metab. 7, 3-12.
- Maiese, K., and Chong, Z.Z. (2003). Nicotinamide: necessary nutrient emerges as a novel cytoprotectant for the brain. Trends Pharmacol. Sci. 24, 228-232. https://doi.org/10.1016/S0165-6147(03)00078-6
- McFarland, G.A., and Holliday, R. (1994). Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp. Cell Res. 212, 167-175 https://doi.org/10.1006/excr.1994.1132
- Melov, S. (2000). Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann. N Y Acad. Sci. 908, 219-225.
- Packer, L., and Fuehr, K. (1997). Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 267, 423-425.
- Parrinello, S., Samper, E., Krtolica, A., Goldstein, J., Melov, S., and Campisi, J. (2003). Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat. Cell Biol. 5, 741-747 https://doi.org/10.1038/ncb1024
- Passos, J.F., Saretzki, G., and von Zglinicki, T. (2007). DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res. 35, 7505-7513. https://doi.org/10.1093/nar/gkm893
- Rattan, S.I., and Clark, B.F. (1994). Kinetin delays the onset of ageing characteristics in human fibroblasts. Biochem. Biophys. Res. Commun. 201, 665-672. https://doi.org/10.1006/bbrc.1994.1752
- Serra, V., von Zglinicki, T., Lorenz, M., and Saretzki, G. (2003). Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J. Biol. Chem. 278, 6824-6830. https://doi.org/10.1074/jbc.M207939200
- Song, Y.S., Lee, B.Y., and Hwang, E.S. (2005). Distinct ROS and biochemical profiles in cells undergoing DNA damage-induced senescence and apoptosis. Mech. Ageing Dev. 126, 580-590. https://doi.org/10.1016/j.mad.2004.11.008
- Spagnuolo, G., D'Anto, V., Cosentino, C., Schmalz, G., Schweikl, H., and Rengo, S. (2006). Effect of N-acetyl-L-cysteine on ROS production and cell death caused by HEMA in human primary gingival fibroblasts. Biomaterials 27, 1803-1809 https://doi.org/10.1016/j.biomaterials.2005.10.022
- Verhasselt, V., Vanden Berghe, W., Vanderheyde, N., Willems, F., Haegeman, G., and Goldman, M. (1999). N-acetyl-L-cysteine inhibits primary human T cell responses at the dendritic cell level: association with NF-kappaB inhibition. J. Immunol. 162, 2569-2574.
- Von Zglinicki, T. (2002). Oxidative stress shortens telomeres. Trends Biochem. Sci. 27, 339-344. https://doi.org/10.1016/S0968-0004(02)02110-2
- Yatin, S.M., Varadarajan, S., and Butterfield, D.A. (2000). Vitamin E prevents Alzheimer's amyloid beta-peptide (1-42)-induced neuronal protein oxidation and reactive oxygen species production. J. Alzheimers Dis. 2, 123-131. https://doi.org/10.3233/JAD-2000-2212
- Zhao, W., Gan, X., Su, G., Wanling, G., Li, S., Hei, Z., Yang, C., and Wang, H. (2014). The interaction between oxidative stress and mast cell activation plays a role in acute lung injuries induced by intestinal ischemia-reperfusion. J. Surg. Res. 187, 542-552. https://doi.org/10.1016/j.jss.2013.10.033
Cited by
- High-Dose Nicotinamide Suppresses ROS Generation and Augments Population Expansion during CD8+ T Cell Activation vol.38, pp.10, 2015, https://doi.org/10.14348/molcells.2015.0168
- Nicotinamide induces mitochondrial-mediated apoptosis through oxidative stress in human cervical cancer HeLa cells vol.181, 2017, https://doi.org/10.1016/j.lfs.2017.06.003
- The Good, the Bad, and the Ugly of ROS: New Insights on Aging and Aging-Related Diseases from Eukaryotic and Prokaryotic Model Organisms vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/1941285
- Cellular senescence: Molecular mechanisms and pathogenicity vol.233, pp.12, 2018, https://doi.org/10.1002/jcp.26956
- Effect of supplementation of nicotinamide and sodium butyrate on the growth performance, liver mitochondrial function and gut microbiota of broilers at high stocking density vol.10, pp.11, 2015, https://doi.org/10.1039/c9fo00904c
- Effect of Antioxidants on the Fibroblast Replicative Lifespan In Vitro vol.2020, pp.None, 2015, https://doi.org/10.1155/2020/6423783
- Organismal Aging and Oxidants beyond Macromolecules Damage vol.20, pp.5, 2015, https://doi.org/10.1002/pmic.201800400
- The Role of Nicotinamide in Cancer Chemoprevention and Therapy vol.10, pp.3, 2015, https://doi.org/10.3390/biom10030477
- Effect of nicotinamide supplementation in in vitro fertilization medium on bovine embryo development vol.87, pp.10, 2020, https://doi.org/10.1002/mrd.23417
- Identification of a novel senomorphic agent, avenanthramide C, via the suppression of the senescence-associated secretory phenotype vol.192, pp.None, 2015, https://doi.org/10.1016/j.mad.2020.111355
- Transcriptome analysis reveals a molecular understanding of nicotinamide and butyrate sodium on meat quality of broilers under high stocking density vol.21, pp.1, 2020, https://doi.org/10.1186/s12864-020-06827-0
- Treatment of melasma: a review of less commonly used antioxidants vol.60, pp.2, 2015, https://doi.org/10.1111/ijd.15133
- Randomized controlled study for the anti‐aging effect of human adipocyte‐derived mesenchymal stem cell media combined with niacinamide after laser therapy vol.20, pp.6, 2015, https://doi.org/10.1111/jocd.13767
- Metabolic energy variation of yeast affects its antioxidant properties in beer brewing vol.1, pp.3, 2015, https://doi.org/10.1007/s43393-021-00027-x
- Mechanistic Basis and Clinical Evidence for the Applications of Nicotinamide (Niacinamide) to Control Skin Aging and Pigmentation vol.10, pp.8, 2021, https://doi.org/10.3390/antiox10081315
- Effect of Dry-Aging on Quality and Palatability Attributes and Flavor-Related Metabolites of Pork Loins vol.10, pp.10, 2015, https://doi.org/10.3390/foods10102503
- Creatine and Nicotinamide Prevent Oxidant-Induced Senescence in Human Fibroblasts vol.13, pp.11, 2015, https://doi.org/10.3390/nu13114102